Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Med ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304782

RESUMEN

Pediatric obesity is a progressive, chronic disease that can lead to serious cardiometabolic complications. Here we investigated the peripheral lipidome in 958 children and adolescents with overweight or obesity and 373 with normal weight, in a cross-sectional study. We also implemented a family-based, personalized program to assess the effects of obesity management on 186 children and adolescents in a clinical setting. Using mass spectrometry-based lipidomics, we report an increase in ceramides, alongside a decrease in lysophospholipids and omega-3 fatty acids with obesity metabolism. Ceramides, phosphatidylethanolamines and phosphatidylinositols were associated with insulin resistance and cardiometabolic risk, whereas sphingomyelins showed inverse associations. Additionally, a panel of three lipids predicted hepatic steatosis as effectively as liver enzymes. Lipids partially mediated the association between obesity and cardiometabolic traits. The nonpharmacological management reduced levels of ceramides, phospholipids and triglycerides, indicating that lowering the degree of obesity could partially restore a healthy lipid profile in children and adolescents.

2.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201477

RESUMEN

Knowledge about the molecular mechanisms underlying the systemic inflammation observed in psoriasis remains incomplete. In this study, we applied mass spectrometry-based proteomics to compare the plasma protein levels between patients with psoriasis and healthy individuals, aiming to unveil potential systemically dysregulated proteins and pathways associated with the disease. Plasma samples from adult patients with moderate-to-severe psoriasis vulgaris (N = 59) and healthy age- and sex-matched individuals (N = 21) were analyzed using liquid chromatography-tandem mass spectrometry. Patients did not receive systemic anti-psoriatic treatment for four weeks before inclusion. A total of 776 protein groups were quantified. Of these, 691 were present in at least 60% of the samples, providing the basis for the downstream analysis. We identified 20 upregulated and 22 downregulated proteins in patients with psoriasis compared to controls (p < 0.05). Multiple proteins from the complement system were upregulated, including C2, C4b, C5, and C9, and pathway analysis revealed enrichment of proteins involved in complement activation and formation of the terminal complement complex. On the other end of the spectrum, periostin was the most downregulated protein in sera from patients with psoriasis. This comprehensive proteomic investigation revealed significantly elevated levels of complement cascade proteins in psoriatic plasma, which might contribute to increased systemic inflammation in patients with psoriasis.


Asunto(s)
Proteínas del Sistema Complemento , Proteómica , Psoriasis , Humanos , Psoriasis/sangre , Psoriasis/metabolismo , Masculino , Femenino , Proteómica/métodos , Adulto , Proteínas del Sistema Complemento/metabolismo , Persona de Mediana Edad , Estudios de Casos y Controles , Espectrometría de Masas en Tándem , Proteoma/metabolismo , Biomarcadores/sangre , Cromatografía Liquida
3.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604732

RESUMEN

INTRODUCTION: Diabetic retinopathy (DR), diabetic kidney disease (DKD) and distal symmetric polyneuropathy (DSPN) share common pathophysiology and pose an additive risk of early mortality. RESEARCH DESIGN AND METHODS: In adults with type 1 diabetes, 49 metabolites previously associated with either DR or DKD were assessed in relation to presence of DSPN. Metabolites overlapping in significance with presence of all three complications were assessed in relation to microvascular burden severity (additive number of complications-ie, presence of DKD±DR±DSPN) using linear regression models. Subsequently, the same metabolites were assessed with progression to endpoints: soft microvascular events (progression in albuminuria grade, ≥30% estimated glomerular filtration rate (eGFR) decline, or any progression in DR grade), hard microvascular events (progression to proliferative DR, chronic kidney failure, or ≥40% eGFR decline), and hard microvascular or macrovascular events (hard microvascular events, cardiovascular events (myocardial infarction, stroke, or arterial interventions), or cardiovascular mortality), using Cox models. All models were adjusted for sex, baseline age, diabetes duration, systolic blood pressure, HbA1c, body mass index, total cholesterol, smoking, and statin treatment. RESULTS: The full cohort investigated consisted of 487 participants. Mean (SD) follow-up was 4.8 (2.9, 5.7) years. Baseline biothesiometry was available in 202 participants, comprising the cross-sectional cohort. Eight metabolites were significantly associated with presence of DR, DKD, and DSPN, and six with additive microvascular burden severity. In the full cohort longitudinal analysis, higher levels of 3,4-dihydroxybutanoic acid (DHBA), 2,4-DHBA, ribonic acid, glycine, and ribitol were associated with development of events in both crude and adjusted models. Adding 3,4-DHBA, ribonic acid, and glycine to a traditional risk factor model improved the discrimination of hard microvascular events. CONCLUSIONS: While prospective studies directly assessing the predictive ability of these markers are needed, our results strengthen the role of clinical metabolomics in relation to risk assessment of diabetic complications in chronic type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Neuropatías Diabéticas , Retinopatía Diabética , Adulto , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Estudios Prospectivos , Estudios Transversales , Retinopatía Diabética/etiología , Retinopatía Diabética/complicaciones , Neuropatías Diabéticas/complicaciones , Glicina
4.
J Hepatol ; 81(2): 345-359, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38552880

RESUMEN

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.


Asunto(s)
Biomarcadores , Humanos , Biomarcadores/análisis , Biomarcadores/metabolismo , Hígado Graso/diagnóstico , Hígado Graso/genética , Proteómica/métodos , Metabolómica/métodos , Genómica/métodos
5.
Mol Neurobiol ; 61(4): 2021-2032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37843799

RESUMEN

Cerebrospinal fluid (CSF) is a metabolically diverse biofluid and a key specimen for exploring biochemical changes in neurodegenerative diseases. Detecting lipid species in CSF using mass spectrometry (MS)-based techniques remains challenging because lipids are highly complex in structure, and their concentrations span over a broad dynamic range. This work aimed to develop a robust lipidomics and metabolomics method based on commonly used two-phase extraction systems from human CSF samples. Prioritizing lipid detection, biphasic extraction methods, Folch, Bligh and Dyer (B&D), Matyash, and acidified Folch and B&D (aFolch and aB&D) were compared using 150 µL of human CSF samples for the simultaneous extraction of lipids and metabolites with a wide range of polarity. Multiple chromatographical separation approaches, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), and gas chromatography (GC), were utilized to characterize human CSF metabolome. The aB&D method was found as the most reproducible technique (RSD < 15%) for lipid extraction. The aB&D and B&D yielded the highest peak intensities for targeted lipid internal standards and displayed superior extracting power for major endogenous lipid classes. A total of 674 unique metabolites with a wide polarity range were annotated in CSF using, combining RPLC-MS/MS lipidomics (n = 219), HILIC-MS/MS (n = 304), and GC-quadrupole time of flight (QTOF) MS (n = 151). Overall, our findings show that the aB&D extraction method provided suitable lipid coverage, reproducibility, and extraction efficiency for global lipidomics profiling of human CSF samples. In combination with RPLC-MS/MS lipidomics, complementary screening approaches enabled a comprehensive metabolite signature that can be employed in an array of clinical studies.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Humanos , Reproducibilidad de los Resultados , Metabolómica/métodos , Lípidos/química
6.
Liver Int ; 43(12): 2680-2691, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37592403

RESUMEN

BACKGROUND: Frequent binge drinking is a known contributor to alcohol-related harm, but its impact on systemic and hepatic inflammation is not fully understood. We hypothesize that changes in immune markers play a central role in adverse effects of acute alcohol intake, especially in patients with early liver disease. AIM: To investigate the effects of acute alcohol intoxication on inflammation-related markers in hepatic and systemic venous plasma in people with alcohol-related liver disease (ArLD), non-alcoholic fatty liver disease (NAFLD) and healthy controls. METHODS: Thirty-eight participants (13 with ArLD, 15 with NAFLD and 10 healthy controls) received 2.5 mL of 40% ethanol per kg body weight via a nasogastric tube. Seventy-two inflammation-related markers were quantified in plasma from hepatic and systemic venous blood, at baseline, 60 and 180 min after intervention. RESULTS: Alcohol intervention altered the levels of 31 of 72 and 14 of 72 markers in the systemic and hepatic circulation. All changes observed in the hepatic circulation were also identified in the systemic circulation after 180 min. Only FGF21 and IL6 were increased after alcohol intervention, while the remaining 29 markers decreased. Differences in response to acute alcohol between the groups were observed for 8 markers, and FGF21 response was blunted in individuals with steatosis. CONCLUSION: Acute alcohol intoxication induced changes in multiple inflammation-related markers, implicated in alcohol metabolism and hepatocellular damage. Differences identified between marker response to binge drinking in ArLD, NAFLD and healthy controls may provide important clues to disease mechanisms and potential targets for treatment. CLINICAL TRIAL NUMBER: NCT03018990.


Asunto(s)
Intoxicación Alcohólica , Consumo Excesivo de Bebidas Alcohólicas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Intoxicación Alcohólica/complicaciones , Etanol/efectos adversos , Inflamación
7.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012386

RESUMEN

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

8.
J Invest Dermatol ; 143(8): 1559-1568.e5, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36773646

RESUMEN

Hand eczema (HE) is a prevalent skin disease. However, the classification of HE into different subtypes remains challenging. A limited number of previous studies have employed invasive biopsy-based strategies; yet, studies of the HE proteome using noninvasive tape-stripping methodology have not been reported. In this study, we wanted to assess whether global proteomic analysis of skin tape strip samples can be used for subclassification of patients with HE. Tape strips were collected from patients with HE and healthy skin. Liquid chromatography-mass spectrometry proteomics was performed, and the global protein expression was analyzed. We identified 2,919 proteins in stratum corneum-derived skin cells from tape strip samples. Compared with healthy skin, the lesional samples from patients with HE exhibited increased expression of immune-related markers and a decreased expression of structural barrier proteins. The difference between HE subtypes was restricted to the lesional skin areas and included an increased expression of skin barrier-related proteins independently of the concurrent AD. In conclusion, we found that the noninvasive tape strip method used in combination with liquid chromatography-mass spectrometry proteomics can be used for analysis of skin protein expression in patients with HE. Thus, the method shows potential for assessing the proteomic differences between subtypes of HE and biomarker discovery.


Asunto(s)
Eccema , Proteoma , Humanos , Proteoma/metabolismo , Proteómica/métodos , Piel/metabolismo , Epidermis/metabolismo , Biomarcadores/metabolismo
9.
Circulation ; 146(11): 851-867, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35959657

RESUMEN

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by high propensity to life-threatening arrhythmias and progressive loss of heart muscle. More than 40% of reported genetic variants linked to ARVC reside in the PKP2 gene, which encodes the PKP2 protein (plakophilin-2). METHODS: We describe a comprehensive characterization of the ARVC molecular landscape as determined by high-resolution mass spectrometry, RNA sequencing, and transmission electron microscopy of right ventricular biopsy samples obtained from patients with ARVC with PKP2 mutations and left ventricular ejection fraction >45%. Samples from healthy relatives served as controls. The observations led to experimental work using multiple imaging and biochemical techniques in mice with a cardiac-specific deletion of Pkp2 studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS: Samples from patients with ARVC present a loss of nuclear envelope integrity, molecular signatures indicative of increased DNA damage, and a deficit in transcripts coding for proteins in the electron transport chain. Mice with a cardiac-specific deletion of Pkp2 also present a loss of nuclear envelope integrity, which leads to DNA damage and subsequent excess oxidant production (O2.- and H2O2), the latter increased further under mechanical stress (isoproterenol or exercise). Increased oxidant production and DNA damage is recapitulated in human induced pluripotent stem cell-derived PKP2-deficient myocytes. Furthermore, PKP2-deficient cells release H2O2 into the extracellular environment, causing DNA damage and increased oxidant production in neighboring myocytes in a paracrine manner. Treatment with honokiol increases SIRT3 (mitochondrial nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-3) activity, reduces oxidant levels and DNA damage in vitro and in vivo, reduces collagen abundance in the right ventricular free wall, and has a protective effect on right ventricular function. CONCLUSIONS: Loss of nuclear envelope integrity and subsequent DNA damage is a key substrate in the molecular pathology of ARVC. We show transcriptional downregulation of proteins of the electron transcript chain as an early event in the molecular pathophysiology of the disease (before loss of left ventricular ejection fraction <45%), which associates with increased oxidant production (O2.- and H2O2). We propose therapies that limit oxidant formation as a possible intervention to restrict DNA damage in ARVC.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Células Madre Pluripotentes Inducidas , Placofilinas , Adulto , Animales , Displasia Ventricular Derecha Arritmogénica/patología , Daño del ADN , Humanos , Peróxido de Hidrógeno , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mutación , Miocitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Oxidantes/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Volumen Sistólico , Función Ventricular Izquierda
10.
Nature ; 609(7927): 590-596, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002575

RESUMEN

Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1-3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP-but not unmodified MDP-constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina , Proteína Adaptadora de Señalización NOD2 , Fosfotransferasas (Aceptor de Grupo Alcohol) , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/inmunología , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacología , Animales , Bacterias/química , Bacterias/inmunología , Pared Celular/química , Hexosaminas/biosíntesis , Inmunidad Innata , Macrófagos/enzimología , Macrófagos/inmunología , Ratones , Proteína Adaptadora de Señalización NOD2/agonistas , Proteína Adaptadora de Señalización NOD2/metabolismo , Peptidoglicano/química , Peptidoglicano/inmunología , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
11.
J Biol Chem ; 297(6): 101388, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762911

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) converts nicotinamide to NAD+. As low hepatic NAD+ levels have been linked to the development of nonalcoholic fatty liver disease, we hypothesized that ablation of hepatic Nampt would affect susceptibility to liver injury in response to diet-induced metabolic stress. Following 3 weeks on a low-methionine and choline-free 60% high-fat diet, hepatocyte-specific Nampt knockout (HNKO) mice accumulated less triglyceride than WT littermates but had increased histological scores for liver inflammation, necrosis, and fibrosis. Surprisingly, liver injury was also observed in HNKO mice on the purified control diet. This HNKO phenotype was associated with decreased abundance of mitochondrial proteins, especially proteins involved in oxidoreductase activity. High-resolution respirometry revealed lower respiratory capacity in purified control diet-fed HNKO liver. In addition, fibrotic area in HNKO liver sections correlated negatively with hepatic NAD+, and liver injury was prevented by supplementation with NAD+ precursors nicotinamide riboside and nicotinic acid. MS-based proteomic analysis revealed that nicotinamide riboside supplementation rescued hepatic levels of oxidoreductase and OXPHOS proteins. Finally, single-nucleus RNA-Seq showed that transcriptional changes in the HNKO liver mainly occurred in hepatocytes, and changes in the hepatocyte transcriptome were associated with liver necrosis. In conclusion, HNKO livers have reduced respiratory capacity, decreased abundance of mitochondrial proteins, and are susceptible to fibrosis because of low NAD+ levels. Our data suggest a critical threshold level of hepatic NAD+ that determines the predisposition to liver injury and supports that NAD+ precursor supplementation can prevent liver injury and nonalcoholic fatty liver disease progression.


Asunto(s)
Hepatocitos/metabolismo , Mitocondrias Hepáticas/metabolismo , NAD/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Citocinas/deficiencia , Citocinas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/genética , NAD/genética , Nicotinamida Fosforribosiltransferasa/deficiencia , Nicotinamida Fosforribosiltransferasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Fosforilación Oxidativa , Fenotipo
12.
J Clin Med ; 10(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34682795

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease affecting up to 6.5% of the general population. There is no simple definition of NASH, and the molecular mechanism underlying disease pathogenesis remains elusive. Studies applying single omics technologies have enabled a better understanding of the molecular profiles associated with steatosis and hepatic inflammation-the commonly accepted histologic features for diagnosing NASH, as well as the discovery of novel candidate biomarkers. Multi-omics analysis holds great potential to uncover new insights into disease mechanism through integrating multiple layers of molecular information. Despite the technical and computational challenges associated with such efforts, a few pioneering studies have successfully applied multi-omics technologies to investigate NASH. Here, we review the most recent technological developments in mass spectrometry (MS)-based proteomics, metabolomics, and lipidomics. We summarize multi-omics studies and emerging omics biomarkers in NASH and highlight the biological insights gained through these integrated analyses.

14.
Nat Commun ; 12(1): 1093, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597537

RESUMEN

Interactions between host and gut microbial communities are modulated by diets and play pivotal roles in immunological homeostasis and health. We show that exchanging the protein source in a high fat, high sugar, westernized diet from casein to whole-cell lysates of the non-commensal bacterium Methylococcus capsulatus Bath is sufficient to reverse western diet-induced changes in the gut microbiota to a state resembling that of lean, low fat diet-fed mice, both under mild thermal stress (T22 °C) and at thermoneutrality (T30 °C). Concomitant with microbiota changes, mice fed the Methylococcus-based western diet exhibit improved glucose regulation, reduced body and liver fat, and diminished hepatic immune infiltration. Intake of the Methylococcu-based diet markedly boosts Parabacteroides abundances in a manner depending on adaptive immunity, and upregulates triple positive (Foxp3+RORγt+IL-17+) regulatory T cells in the small and large intestine. Collectively, these data point to the potential for leveraging the use of McB lysates to improve immunometabolic homeostasis.


Asunto(s)
Intestino Grueso/inmunología , Intestino Delgado/inmunología , Methylococcus capsulatus/inmunología , Microbiota/inmunología , Proteínas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Dieta , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Homeostasis/inmunología , Interleucina-17/inmunología , Interleucina-17/metabolismo , Intestino Grueso/metabolismo , Intestino Grueso/microbiología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Masculino , Methylococcus capsulatus/química , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Obesidad/inmunología , Proteínas/metabolismo , Linfocitos T Reguladores/metabolismo
15.
Mol Metab ; 42: 101080, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32937194

RESUMEN

OBJECTIVE: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. METHODS: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). RESULTS: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). CONCLUSIONS: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.


Asunto(s)
Aminoácidos/metabolismo , Hígado Graso/fisiopatología , Glucagón/metabolismo , Adulto , Animales , Glucemia/metabolismo , Hígado Graso/metabolismo , Femenino , Glucagón/fisiología , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Hepatocitos/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas , Ratas Wistar , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo , Urea/metabolismo
16.
Sci Rep ; 10(1): 9422, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523012

RESUMEN

Infant adiposity may be related to later metabolic health. Maternal metabolite profiling reflects both genetic and environmental influences and allows elucidation of metabolic pathways associated with infant adiposity. In this multi-ethnic Asian cohort, we aimed to (i) identify maternal plasma metabolites associated with infant adiposity and other birth outcomes and (ii) investigate the maternal characteristics associated with those metabolites. In 940 mother-offspring pairs, we performed gas chromatography-mass spectrometry and identified 134 metabolites in maternal fasting plasma at 26-28 weeks of gestation. At birth, neonatal triceps and subscapular skinfold thicknesses were measured by trained research personnel, while weight and length measures were abstracted from delivery records. Gestational age was estimated from first-trimester dating ultrasound. Associations were assessed by multivariable linear regression, with p-values corrected using the Benjamini-Hochberg approach. At a false discovery rate of 5%, we observed associations between 28 metabolites and neonatal sum of skinfold thicknesses (13 amino acid-related, 4 non-esterified fatty acids, 6 xenobiotics, and 5 unknown compounds). Few associations were observed with gestational duration, birth weight, or birth length. Maternal ethnicity, pre-pregnancy BMI, and diet quality during pregnancy had the strongest associations with the specific metabolome related to infant adiposity. Further studies are warranted to replicate our findings and to understand the underlying mechanisms.


Asunto(s)
Adiposidad/fisiología , Biomarcadores/sangre , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Adulto , Peso al Nacer/fisiología , Índice de Masa Corporal , Dieta/métodos , Femenino , Edad Gestacional , Humanos , Recién Nacido , Obesidad/sangre , Obesidad/fisiopatología , Embarazo , Estudios Prospectivos , Grosor de los Pliegues Cutáneos
17.
Sci Rep ; 10(1): 3547, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32080320

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Nat Commun ; 11(1): 331, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949144

RESUMEN

A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 µL of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions.


Asunto(s)
Espectrometría de Movilidad Iónica , Lipidómica/métodos , Lípidos/sangre , Animales , Cromatografía Liquida , Análisis de Datos , Humanos , Isomerismo , Isótopos , Ratones , Espectrometría de Masas en Tándem , Flujo de Trabajo
19.
Anal Chem ; 91(22): 14407-14416, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31638379

RESUMEN

A challenge facing metabolomics in the analysis of large human cohorts is the cross-laboratory comparability of quantitative metabolomics measurements. In this study, 14 laboratories analyzed various blood specimens using a common experimental protocol provided with the Biocrates AbsoluteIDQ p400HR kit, to quantify up to 408 metabolites. The specimens included human plasma and serum from male and female donors, mouse and rat plasma, as well as NIST SRM 1950 reference plasma. The metabolite classes covered range from polar (e.g., amino acids and biogenic amines) to nonpolar (e.g., diacyl- and triacyl-glycerols), and they span 11 common metabolite classes. The manuscript describes a strict system suitability testing (SST) criteria used to evaluate each laboratory's readiness to perform the assay, and provides the SST Skyline documents for public dissemination. The study found approximately 250 metabolites were routinely quantified in the sample types tested, using Orbitrap instruments. Interlaboratory variance for the NIST SRM-1950 has a median of 10% for amino acids, 24% for biogenic amines, 38% for acylcarnitines, 25% for glycerolipids, 23% for glycerophospholipids, 16% for cholesteryl esters, 15% for sphingolipids, and 9% for hexoses. Comparing to consensus values for NIST SRM-1950, nearly 80% of comparable analytes demonstrated bias of <50% from the reference value. The findings of this study result in recommendations of best practices for system suitability, quality control, and calibration. We demonstrate that with appropriate controls, high-resolution metabolomics can provide accurate results with good precision across laboratories, and the p400HR therefore is a reliable approach for generating consistent and comparable metabolomics data.


Asunto(s)
Aminoácidos/sangre , Aminas Biogénicas/sangre , Análisis Químico de la Sangre/estadística & datos numéricos , Lipidómica/estadística & datos numéricos , Lípidos/sangre , Metabolómica/estadística & datos numéricos , Análisis de Varianza , Animales , Cromatografía Líquida de Alta Presión/estadística & datos numéricos , Agregación de Datos , Femenino , Humanos , Límite de Detección , Masculino , Espectrometría de Masas/estadística & datos numéricos , Metaboloma , Ratones , Ratas , Reproducibilidad de los Resultados
20.
Sci Rep ; 9(1): 13701, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31548567

RESUMEN

Prediction of spontaneous preterm birth (sPTB) in asymptomatic women remains a great challenge; accurate and reproducible screening tools are still not available in clinical practice. We aimed to investigate whether the maternal serum metabolome together with clinical factors could be used to identify asymptomatic women at risk of sPTB. We conducted two case-control studies using gas chromatography-mass spectrometry to analyse maternal serum samples collected at 15- and 20-weeks' gestation from 164 nulliparous women from Cork, and 157 from Auckland. Smoking and vaginal bleeding before 15 weeks were the only significant clinical predictors of sPTB for Auckland and Cork subsets, respectively. Decane, undecane, and dodecane were significantly associated with sPTB (FDR < 0.05) in the Cork subset. An odds ratio of 1.9 was associated with a one standard deviation increase in log (undecane) in a multiple logistic regression which also included vaginal bleeding as a predictor. In summary, elevated serum levels of the alkanes decane, undecane, and dodecane were associated with sPTB in asymptomatic nulliparous women from Cork, but not in the Auckland cohort. The association is not strong enough to be a useful clinical predictor, but suggests that further investigation of the association between oxidative stress processes and sPTB risk is warranted.


Asunto(s)
Metaboloma , Nacimiento Prematuro/diagnóstico , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Humanos , Recién Nacido , Espectrometría de Masas , Edad Materna , Embarazo , Nacimiento Prematuro/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA