Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117093, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971012

RESUMEN

Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.

2.
BMC Med ; 22(1): 258, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902731

RESUMEN

BACKGROUND: The 2018/2023 ESC/ESH Guidelines underlined a gap how baseline cardiovascular disease (CVD) risk predicted blood pressure (BP) lowering benefits. Further, 2017 ACC/AHA Guideline and 2021 WHO Guideline recommended implementation studies about intensive BP control. Now, to bridge these guideline gaps, we conducted a post hoc analysis to validate whether the baseline CVD risk influences the effectiveness of the intensive BP control strategy, which was designed by China Rural Hypertension Control Project (CRHCP). METHODS: This is a post hoc analysis of CRHCP, among which participants were enrolled except those having CVD history, over 80 years old, or missing data. Subjects were stratified into quartiles by baseline estimated CVD risk and then grouped into intervention and usual care group according to original assignment in CRHCP. Participants in the intervention group received an integrated, multi-faceted treatment strategy, executed by trained non-physician community health-care providers, aiming to achieve a BP target of < 130/80 mmHg. Cox proportional-hazards models were used to estimate the hazard ratios of outcomes for intervention in each quartile, while interaction effect between intervention and estimated CVD risk quartiles was additionally assessed. The primary outcome comprised myocardial infarction, stroke, hospitalization for heart failure, or CVD deaths. RESULTS: Significant lower rates of primary outcomes for intervention group compared with usual care for each estimated CVD risk quartile were reported. The hazard ratios (95% confidence interval) in the four quartiles (from Q1 to Q4) were 0.59 (0.40, 0.87), 0.54 (0.40, 0.72), 0.72 (0.57, 0.91) and 0.65 (0.53, 0.80), respectively (all Ps < 0.01). There's no significant difference of hazard ratios by intervention across risk quartiles (P for interaction = 0.370). Only the relative risk of hypotension, not symptomatic hypotension, was elevated in the intervention group among upper three quartiles. CONCLUSIONS: Intensive BP lowering strategy designed by CRHCP group was effective and safe in preventing cardiovascular events independent of baseline CVD risk. TRIAL REGISTRATION: The trial is registered with ClinicalTrials.gov, NCT03527719.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Humanos , Masculino , Femenino , China/epidemiología , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Persona de Mediana Edad , Anciano , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/epidemiología , Presión Sanguínea/fisiología , Población Rural , Antihipertensivos/uso terapéutico , Resultado del Tratamiento , Factores de Riesgo de Enfermedad Cardiaca
3.
JAMA Cardiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888905

RESUMEN

Importance: The sustainable effectiveness and safety of a nonphysician community health care practitioner-led intensive blood pressure intervention on cardiovascular disease have not, to the authors' knowledge, been studied, especially in the older adult population. Objective: To evaluate such a multifaceted model with a more stringent blood pressure treatment goal (<130/80 mm Hg) among patients aged 60 years and older with hypertension. Design, Setting, and Participants: This was a 48-month follow-up study of the China Rural Hypertension Control Project (CRHCP), an open-cluster randomized clinical trial, conducted from 2018 to 2023. Participants 60 years and older and younger than 60 years with a diagnosis of hypertension from the CRHCP trial were included for analysis. Individuals were recruited from 326 villages in rural China. Interventions: The well-trained, nonphysician, community health care practitioner implemented a multifaceted intervention program (eg, initiation or titration of antihypertensive medications) to achieve a blood pressure level of less than 130/80 mm Hg, supervised by primary care physicians. Main Outcomes and Measures: Cardiovascular disease (a composite of myocardial infarction, stroke, heart failure requiring hospitalization, and cardiovascular disease death). Results: A total of 22 386 individuals 60 years and older with hypertension and 11 609 individuals younger than 60 years with hypertension were included in the analysis. The mean (SD) age of the participants was 63.0 (9.0) years and included 20 825 females (61.3%). Among the older individuals with hypertension, a total of 11 289 patients were randomly assigned to the intervention group and 11 097 to the usual-care group. During a median (IQR) of 4.0 (4.0-4.1) years, there was a significantly lower rate of total cardiovascular disease (1133 [2.7%] vs 1433 [3.5%] per year; hazard ratio [HR], 0.75; 95% CI, 0.69-0.81; P < .001) and all-cause mortality (1111 [2.5%] vs 1210 [2.8%] per year; HR, 0.90; 95% CI, 0.83-0.98; P = .01) in the intervention group than in the usual-care group. For patients younger than 60 years, the risk reductions were also significant for total cardiovascular disease (HR, 0.64; 95% CI, 0.56-0.75; P < .001), stroke (HR, 0.64; 95% CI, 0.55-0.76; P < .001), heart failure (HR, 0.39; 95% CI, 0.18-0.87; P = .02), and cardiovascular death (HR, 0.54; 95% CI, 0.37-0.77; P < .001), with all interaction P values for age groups greater than .05. In both age categories, the incidences of injurious falls, symptomatic hypotension, syncope, and the results for kidney outcomes did not differ significantly between groups. Conclusions and Relevance: In both the aging and younger general population with hypertension, the nonphysician health care practitioner-led, multifaceted, intensive blood pressure intervention model could effectively and safely reduce the risk of cardiovascular disease and all-cause death. Trial Registration: ClinicalTrials.gov Identifier: NCT03527719.

4.
Pharmacol Res ; : 107281, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942341

RESUMEN

Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.

5.
Cell Rep ; 43(6): 114366, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38879877

RESUMEN

p53 regulates multiple signaling pathways and maintains cell homeostasis under conditions of DNA damage and oxidative stress. Although USP7 has been shown to promote p53 stability via deubiquitination, the USP7-p53 activation mechanism has remained unclear. Here, we propose that DNA damage induces reactive oxygen species (ROS) production and activates ATM-CHK2, and CHK2 then phosphorylates USP7 at S168 and T231. USP7 phosphorylation is essential for its deubiquitination activity toward p53. USP7 also deubiquitinates CHK2 at K119 and K131, increasing CHK2 stability and creating a positive feedback loop between CHK2 and USP7. Compared to peri-tumor tissues, thyroid cancer and colon cancer tissues show higher CHK2 and phosphorylated USP7 (S168, T231) levels, and these levels are positively correlated. Collectively, our results uncover a phosphorylation-deubiquitination positive feedback loop involving the CHK2-USP7 axis that supports the stabilization of p53 and the maintenance of cell homeostasis.


Asunto(s)
Quinasa de Punto de Control 2 , Estrés Oxidativo , Proteína p53 Supresora de Tumor , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación , Quinasa de Punto de Control 2/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Fosforilación , Retroalimentación Fisiológica , Daño del ADN , Especies Reactivas de Oxígeno/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Transducción de Señal , Línea Celular Tumoral , Estabilidad Proteica , Animales
6.
J Transl Int Med ; 12(1): 35-50, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38591063

RESUMEN

Background and Objectives: Cardiac injury plays a critical role in contributing to the mortality associated with sepsis, a condition marked by various forms of programmed cell deaths. Previous studies hinted at the WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) involving in heart failure and endothelial injury. However, the precise implications of WWP2 in sepsis-induced cardiac injury, along with the underlying mechanisms, remain enigmatic. Methods: Sepsis induced cardiac injury were constructed by intraperitoneal injection of lipopolysaccharide. To discover the function of WWP2 during this process, we designed and performed loss/gain-of-function studies with cardiac-specific vectors and WWP2 knockout mice. Combination experiments were performed to investigate the relationship between WWP2 and downstream signaling in septic myocardium injury. Results: The protein level of WWP2 was downregulated in cardiomyocytes during sepsis. Cardiac-specific overexpression of WWP2 protected heart from sepsis induced mitochondrial oxidative stress, programmed cell death and cardiac injury, while knockdown or knockout of WWP2 exacerbated this process. The protective potency of WWP2 was predominantly linked to its ability to suppress cardiomyocyte ferroptosis rather than apoptosis. Mechanistically, our study revealed a direct interaction between WWP2 and acyl-CoA synthetase long-chain family member 4 (FACL4), through which WWP2 facilitated the ubiquitin-dependent degradation of FACL4. Notably, we observed a notable reduction in ferroptosis and cardiac injury within WWP2 knockout mice after FACL4 knockdown during sepsis. Conclusions: WWP2 assumes a critical role in safeguarding the heart against injury induced by sepsis via regulating FACL4 to inhibit LPS-induced cardiomyocytes ferroptosis.

7.
Int J Biol Macromol ; 265(Pt 2): 130961, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508558

RESUMEN

Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Enfermedades Metabólicas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Metabolismo de los Lípidos , Lípidos
8.
J Cell Mol Med ; 28(7): e18158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494853

RESUMEN

The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Humanos , Cardiomiopatías Diabéticas/genética , Procesamiento Proteico-Postraduccional , Ubiquitinación , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo
9.
Mol Aspects Med ; 96: 101257, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38430667

RESUMEN

Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.


Asunto(s)
Transducción de Señal , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Diferenciación Celular , Carcinogénesis , Mamíferos
10.
J Adv Res ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38123019

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW: This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.

11.
Basic Res Cardiol ; 118(1): 48, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938421

RESUMEN

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Fosforilación Oxidativa , Aldehído-Liasas , Redes y Vías Metabólicas
12.
Curr Pharm Des ; 29(30): 2387-2395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37855363

RESUMEN

BACKGROUND: In this study, we aimed to clarify the role and mechanism by which Cathepsin D (CTSD) mediates the advanced glycation end products (AGEs)-induced proliferation of vascular smooth muscle cells (VSMCs). METHODS: We conducted a Western blotting assay and co-immunoprecipitation assay to detect the expression of target proteins and the interaction between different proteins. Cell Counting Kit-8 (CCK-8) assay and 5- ethynyl-2'-deoxyuridine (EdU) were used to evaluate the proliferation. RESULTS: AGEs significantly promoted phenotypic switching and proliferation of VSMCs in a concentration-dependent manner. This effect of AGEs was accompanied by inhibition of CTSD. Both the proliferation of VSMCs and inhibition of CTSD induced by AGEs could be attenuated by the specific inhibitor of the receptor for advanced glycation end products (RAGE), FPS-ZM1. Overexpression of CTSD significantly alleviated these effects of AGEs on VSMCs. The mechanism of CTSD action in VSMCs was also explored. Overexpression of CTSD reduced the activation of p-ERK caused by AGEs. By contrast, the knockdown of CTSD, elicited using a plasmid containing short hairpin RNA (shRNA) against CTSD, further increased the activation of p-ERK compared to AGEs alone. Additionally, co-immunoprecipitation studies revealed an endogenous interaction between CTSD, a protease, and p-ERK, its potential substrate. CONCLUSION: It has been demonstrated that CTSD downregulates the level of phosphorylated ERK by degrading its target, and this interaction plays a critical role in the proliferation of VSMCs induced by the AGE/RAGE axis. These results provide a novel insight into the prevention and treatment of vascular complications in diabetes.


Asunto(s)
Productos Finales de Glicación Avanzada , Músculo Liso Vascular , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Músculo Liso Vascular/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacología , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
13.
Cell Res ; 33(9): 679-698, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37443257

RESUMEN

The sarcomeric interaction of α-myosin heavy chain (α-MHC) with Titin is vital for cardiac structure and contraction. However, the mechanism regulating this interaction in normal and failing hearts remains unknown. Lactate is a crucial energy substrate of the heart. Here, we identify that α-MHC undergoes lactylation on lysine 1897 to regulate the interaction of α-MHC with Titin. We observed a reduction of α-MHC K1897 lactylation in mice and patients with heart failure. Loss of K1897 lactylation in α-MHC K1897R knock-in mice reduces α-MHC-Titin interaction and leads to impaired cardiac structure and function. Furthermore, we identified that p300 and Sirtuin 1 act as the acyltransferase and delactylase of α-MHC, respectively. Decreasing lactate production by chemical or genetic manipulation reduces α-MHC lactylation, impairs α-MHC-Titin interaction and worsens heart failure. By contrast, upregulation of the lactate concentration by administering sodium lactate or inhibiting the pivotal lactate transporter in cardiomyocytes can promote α-MHC K1897 lactylation and α-MHC-Titin interaction, thereby alleviating heart failure. In conclusion, α-MHC lactylation is dynamically regulated and an important determinant of overall cardiac structure and function. Excessive lactate efflux and consumption by cardiomyocytes may decrease the intracellular lactate level, which is the main cause of reduced α-MHC K1897 lactylation during myocardial injury. Our study reveals that cardiac metabolism directly modulates the sarcomeric structure and function through lactate-dependent modification of α-MHC.


Asunto(s)
Insuficiencia Cardíaca , Cadenas Pesadas de Miosina , Animales , Ratones , Conectina/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miocitos Cardíacos/metabolismo , Lactatos/metabolismo
14.
IEEE J Biomed Health Inform ; 27(7): 3622-3632, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37079413

RESUMEN

A novel temporal convolutional network (TCN) model is utilized to reconstruct the central aortic blood pressure (aBP) waveform from the radial blood pressure waveform. The method does not need manual feature extraction as traditional transfer function approaches. The data acquired by the SphygmoCor CVMS device in 1,032 participants as a measured database and a public database of 4,374 virtual healthy subjects were used to compare the accuracy and computational cost of the TCN model with the published convolutional neural network and bi-directional long short-term memory (CNN-BiLSTM) model. The TCN model was compared with CNN-BiLSTM in the root mean square error (RMSE). The TCN model generally outperformed the existing CNN-BiLSTM model in terms of accuracy and computational cost. For the measured and public databases, the RMSE of the waveform using the TCN model was 0.55 ± 0.40 mmHg and 0.84 ± 0.29 mmHg, respectively. The training time of the TCN model was 9.63 min and 25.51 min for the entire training set; the average test time was around 1.79 ms and 8.58 ms per test pulse signal from the measured and public databases, respectively. The TCN model is accurate and fast for processing long input signals, and provides a novel method for measuring the aBP waveform. This method may contribute to the early monitoring and prevention of cardiovascular disease.


Asunto(s)
Presión Arterial , Determinación de la Presión Sanguínea , Humanos , Determinación de la Presión Sanguínea/métodos , Presión Sanguínea/fisiología , Redes Neurales de la Computación , Frecuencia Cardíaca
15.
Lancet ; 401(10380): 928-938, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36871573

RESUMEN

BACKGROUND: Effectiveness of a non-physician community health-care provider-led intensive blood pressure intervention on cardiovascular disease has not been established. We aimed to test the effectiveness of such an intervention compared with usual care on risk of cardiovascular disease and all-cause death among individuals with hypertension. METHODS: In this open-label, blinded-endpoint, cluster-randomised trial, we recruited individuals aged at least 40 years with an untreated systolic blood pressure of at least 140 mm Hg or a diastolic blood pressure of at least 90 mm Hg (≥130 mm Hg and ≥80 mm Hg for those at high risk for cardiovascular disease or if currently taking antihypertensive medication). We randomly assigned (1:1) 326 villages to a non-physician community health-care provider-led intervention or usual care, stratified by provinces, counties, and townships. In the intervention group, trained non-physician community health-care providers initiated and titrated antihypertensive medications according to a simple stepped-care protocol to achieve a systolic blood pressure goal of less than 130 mm Hg and diastolic blood pressure goal of less than 80 mm Hg with supervision from primary care physicians. They also delivered discounted or free antihypertensive medications and health coaching for patients. The primary effectiveness outcome was a composite outcome of myocardial infarction, stroke, heart failure requiring hospitalisation, and cardiovascular disease death during the 36-month follow-up in the study participants. Safety was assessed every 6 months. This trial is registered with ClinicalTrials.gov, NCT03527719. FINDINGS: Between May 8 and Nov 28, 2018, we enrolled 163 villages per group with 33 995 participants. Over 36 months, the net group difference in systolic blood pressure reduction was -23·1 mm Hg (95% CI -24·4 to -21·9; p<0·0001) and in diastolic blood pressure reduction, it was -9·9 mm Hg (-10·6 to -9·3; p<0·0001). Fewer patients in the intervention group than the usual care group had a primary outcome (1·62% vs 2·40% per year; hazard ratio [HR] 0·67, 95% CI 0·61-0·73; p<0·0001). Secondary outcomes were also reduced in the intervention group: myocardial infarction (HR 0·77, 95% CI 0·60-0·98; p=0·037), stroke (0·66, 0·60-0·73; p<0·0001), heart failure (0·58, 0·42-0·81; p=0·0016), cardiovascular disease death (0·70, 0·58-0·83; p<0·0001), and all-cause death (0·85, 0·76-0·95; p=0·0037). The risk reduction of the primary outcome was consistent across subgroups of age, sex, education, antihypertensive medication use, and baseline cardiovascular disease risk. Hypotension was higher in the intervention than in the usual care group (1·75% vs 0·89%; p<0·0001). INTERPRETATION: The non-physician community health-care provider-led intensive blood pressure intervention is effective in reducing cardiovascular disease and death. FUNDING: The Ministry of Science and Technology of China and the Science and Technology Program of Liaoning Province, China.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hipertensión , Hipotensión , Infarto del Miocardio , Accidente Cerebrovascular , Humanos , Enfermedades Cardiovasculares/complicaciones , Presión Sanguínea , Antihipertensivos/uso terapéutico , Salud Pública , Hipertensión/tratamiento farmacológico , Hipertensión/complicaciones , Hipotensión/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico
16.
Comput Biol Med ; 155: 106654, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791548

RESUMEN

BACKGROUND AND OBJECTIVE: The aortic pressure waveform (APW) provides reliable information for the diagnosis of cardiovascular disease. APW is often measured using a generalized transfer function (GTF) applied to the peripheral pressure waveform acquired noninvasively, to avoid the significant risks of invasive APW acquisition. However, the GTF ignores various physiological conditions, which affects the accuracy of the estimated APW. To solve this problem, this study utilized an adaptive transfer function (ATF) combined with a tube-load model to achieve personalized and accurate estimation of APW from the brachial pressure waveform (BPW). METHODS: The proposed method was validated using APWs and BPWs from 34 patients. The ATF was defined using a tube-load model in which pulse transit time and reflection coefficients were determined from, respectively, the diastolic-exponential-pressure-decay of the APW and a piece-wise constant approximation. The root-mean-square-error of overall morphology, mean absolute errors of common hemodynamic indices (systolic blood pressure, diastolic blood pressure and pulse pressure) were used to evaluate the ATF. RESULTS: The proposed ATF performed better in estimating diastolic blood pressure and pulse pressure (1.63 versus 1.94 mmHg, and 2.37 versus 3.10 mmHg, respectively, both P < 0.10), and produced similar errors in overall morphology and systolic blood pressure (3.91 versus 4.24 mmHg, and 2.83 versus 2.91 mmHg, respectively, both P > 0.10) compared to GTF. CONCLUSION: Unlike the GTF which uses fixed parameters trained on existing clinical datasets, the proposed method can achieve personalized estimation of APW. Hence, it provides accurate pulsatile hemodynamic measures for the evaluation of cardiovascular function.


Asunto(s)
Aorta , Presión Arterial , Humanos , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea/métodos , Hemodinámica
17.
J Clin Med ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36498725

RESUMEN

The aim of the present study was to evaluate the prognostic value of interventricular septum thickness (IVSd) on the incidence of cardiovascular diseases. Based on the general population in Northeast China, 10,349 participants were successfully followed up for echocardiography over a median follow-up time of 4.66 years, among which 4801 were hypertensive. Coronary heart disease (CHD) and myocardial infarction (MI) incidence were followed up. Cox proportional hazards models were used to estimate the association of the baseline IVSd with adverse outcomes. IVS hypertrophy increased incident rates of CHD and MI compared with normal IVSd in the overall population and in the female sex-stratification group. In males, IVS hypertrophy had parallel increase rates of CHD (all p < 0.05). Kaplan−Meier analysis showed that IVS hypertrophy could predict CHD and MI incidence and CHD-free and MI-free survival. Multivariable Cox analysis revealed that IVS hypertrophy was correlated with CHD incidence (HR = 1.155, 95% CI = 1.155−2.861, p = 0.01) and MI incidence (HR = 2.410, 95% CI = 1.303−4.458, p = 0.005). In women, IVS hypertrophy was independently associated with CHD and MI incidence (all p < 0.05). Our prospective cohort study illustrated that IVS hypertrophy detected by echocardiography has a prognostic significance for CHD and MI. Therefore, the early detection of IVSd should be conducted to avoid adverse outcomes in further clinical practice.

18.
BMC Cardiovasc Disord ; 22(1): 214, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545759

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) brings high mortality and economic burden to patients, especially in rural areas. Simple, low-cost abdominal adiposity measures may help identify individuals with increased CVD risk. It is unclear that which obesity indices is the best to predict CVD in hypertensive people. METHODS: Northeast China Rural Cardiovascular Health Study (NCRCHS) is a prospective cohort study in a general population in Northeast China. The study examined the cardiovascular health from 2013 to 2015, and follow-up captured the CVD incidence in 2018. Baseline waist-to-height ratio (WHtR), waist circumference (WC), waist-to-hip (WHR)and body mass index (BMI) were calculated and analyzed in relation to the CVD incidence. RESULTS: A total of 4244 hypertensive adults without pre-existing CVD at baseline were included in this analysis (age 35-92 years; 2108 men). Over a median follow-up of 4.66 years, a total of 290 CVD cases (6.83%) were documented during the follow-up. Baseline WHtR showed a significant positive association with CVD incidence, even after adjusting for age, sex, diabetes, drinking, smoking, SBP, DBP, Triglyceride, HDL-C, LDL-C, and TC (Hazard Ratios per SD of WHtR ranging from 1.03 to 1.31, p = 0.017). Reclassification and discrimination analyses indicated WHtR addition could improve the conventional model for predicting adverse outcomes within 4 years. Moreover, WHtR predicted the CVD incidence better than other obesity indices (BMI, WC, WHR). CONCLUSION: These findings support a positive association between WHtR and CVD incidence in CVD-free hypertensive adults. WHtR can be used to predict CVD incidence in hypertensive adults.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Adulto , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios de Cohortes , Humanos , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipertensión/epidemiología , Incidencia , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/diagnóstico , Obesidad/epidemiología , Estudios Prospectivos , Factores de Riesgo , Circunferencia de la Cintura , Relación Cintura-Estatura , Relación Cintura-Cadera
19.
Lancet ; 399(10339): 1964-1975, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35500594

RESUMEN

BACKGROUND: The prevalence of uncontrolled hypertension is high and increasing in low-income and middle-income countries. We tested the effectiveness of a multifaceted intervention for blood pressure control in rural China led by village doctors (community health workers on the front line of primary health care). METHODS: In this open, cluster randomised trial (China Rural Hypertension Control Project), 326 villages that had a regular village doctor and participated in the China New Rural Cooperative Medical Scheme were randomly assigned (1:1) to either village doctor-led multifaceted intervention or enhanced usual care (control), with stratification by provinces, counties, and townships. We recruited individuals aged 40 years or older with an untreated blood pressure of 140/90 mm Hg or higher (≥130/80 mm Hg among those with a history of cardiovascular disease, diabetes, or chronic kidney disease) or a treated blood pressure of 130/80 mm Hg or higher. In the intervention group, trained village doctors initiated and titrated antihypertensive medications according to a standard protocol with supervision from primary care physicians. Village doctors also conducted health coaching on home blood pressure monitoring, lifestyle changes, and medication adherence. The primary outcome (reported here) was the proportion of patients with a blood pressure of less than 130/80 mm Hg at 18 months. The analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT03527719, and is ongoing. FINDINGS: Between May 8 and November 28, 2018, we enrolled 33 995 individuals from 163 intervention and 163 control villages. At 18 months, 8865 (57·0%) of 15 414 patients in the intervention group and 2895 (19·9%) of 14 500 patients in the control group had a blood pressure of less than 130/80 mm Hg, with a group difference of 37·0% (95% CI 34·9 to 39·1%; p<0·0001). Mean systolic blood pressure decreased by -26·3 mm Hg (95% CI -27·1 to -25·4) from baseline to 18 months in the intervention group and by -11·8 mm Hg (-12·6 to -11·0) in the control group, with a group difference of -14·5 mm Hg (95% CI -15·7 to -13·3 mm Hg; p<0·0001). Mean diastolic blood pressure decreased by -14·6 mm Hg (-15·1 to -14·2) from baseline to 18 months in the intervention group and by -7·5 mm Hg (-7·9 to -7·2) in the control group, with a group difference of -7·1 mm Hg (-7·7 to -6·5 mm Hg; p<0·0001). No treatment-related serious adverse events were reported in either group. INTERPRETATION: Compared with enhanced usual care, village doctor-led intervention resulted in statistically significant improvements in blood pressure control among rural residents in China. This feasible, effective, and sustainable implementation strategy could be scaled up in rural China and other low-income and middle-income countries for hypertension control. FUNDING: Ministry of Science and Technology of China.


Asunto(s)
Hipertensión , Antihipertensivos/uso terapéutico , Presión Sanguínea/fisiología , Monitoreo Ambulatorio de la Presión Arterial , China/epidemiología , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Hipertensión/prevención & control
20.
Front Nutr ; 9: 843616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464025

RESUMEN

The relationship between serum spermidine levels and future cardiovascular disease risk has not yet been well elucidated in the general population based on community studies. Using a nested case-control study, we estimated the association between serum spermidine level and future stroke. New stroke cases had higher baseline levels of spermidine than controls [182.8 (141.8-231.5) vs. 152.0 (124.3-193.0), P < 0.001]. After multivariable adjustment, individuals with spermidine ≥ 205.9 nmol/L (T3) higher risks of stroke (HR 5.02, 95% CI 1.58-16.02) with the lowest quartile (< 136.9 nmol/L) as reference. The association between serum spermidine levels and risk of stroke seemed to be consistent and was reproducible in our cross-sectional studies. In addition, comparisons of the areas under receiver operator characteristics curves confirmed that a model including spermidine had better discrimination than without (0.755 vs. 0.715, P = 0.04). Here we report a close relationship exists between serum spermidine levels and risk of stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA