Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 15: 1412693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076970

RESUMEN

Background: Esophageal cancer (ESCA) is one of the most common tumors in the world, and treatment using neoadjuvant therapy (NT) based on radiotherapy and/or chemotherapy has still unsatisfactory results. Neoadjuvant immunochemotherapy (NICT) has also become an effective treatment strategy nowadays. However, its impact on the tumor microenvironment (TME) and regulatory mechanisms on T cells and NK cells needs to be further elucidated. Methods: A total of 279 cases of ESCA who underwent surgery alone [non-neoadjuvant therapy (NONE)], neoadjuvant chemotherapy (NCT), and NICT were collected, and their therapeutic effect and survival period were compared. Further, RNA sequencing combined with biological information was used to analyze the expression of immune-related genes. Immunohistochemistry, immunofluorescence, and quantitative real-time PCR (qRT-PCR) were used to verify the activation and infiltration status of CD8+ T and CD16+ NK cells, as well as the function and regulatory pathway of killing tumor cells. Results: Patients with ESCA in the NICT group showed better clinical response, median survival, and 2-year survival rates (p < 0.05) compared with the NCT group. Our RNA sequencing data revealed that NICT could promote the expression of immune-related genes. The infiltration and activation of immune cells centered with CD8+ T cells were significantly enhanced. CD8+ T cells activated by PD-1 inhibitors secreted more IFN-γ and cytotoxic effector factor cells through the transcription factor of EOMES and TBX21. At the same time, activated CD8+ T cells mediated the CD16+ NK cell activation and secreted more IFN-γ to kill ESCA cells. In addition, the immunofluorescence co-staining results showed that more CD276+ tumor cells and CD16+ NK cells were existed in pre-NCT and pre-NICT group. However, CD276+ tumor cells were reduced significantly in the post-NICT group, while they still appeared in the post-NCT group, which means that CD16+ NK cells can recognize and kill CD276+ tumor cells after immune checkpoint blocker (ICB) treatment. Conclusion: NICT can improve the therapeutic effect and survival period of resectable ESCA patients. NICT could promote the expression of immune-related genes and activate CD8+ T and CD16+ NK cells to secrete more IFN-γ to kill ESCA cells. It provides a theoretical basis and clinical evidence for its potential as an NT strategy in ESCA.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Esofágicas , Células Asesinas Naturales , Terapia Neoadyuvante , Receptores de IgG , Microambiente Tumoral , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/mortalidad , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Terapia Neoadyuvante/métodos , Masculino , Femenino , Receptores de IgG/metabolismo , Receptores de IgG/genética , Linfocitos T CD8-positivos/inmunología , Persona de Mediana Edad , Microambiente Tumoral/inmunología , Anciano , Proteínas Ligadas a GPI/metabolismo , Resultado del Tratamiento , Inmunoterapia/métodos , Adulto , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
2.
Mol Ther Nucleic Acids ; 35(1): 102129, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38370981

RESUMEN

Circulating tumor cells (CTCs) that undergo epithelial-to-mesenchymal transition (EMT) can provide valuable information regarding metastasis and potential therapies. However, current studies on the EMT overlook alternative splicing. Here, we used single-cell full-length transcriptome data and mRNA sequencing of CTCs to identify stage-specific alternative splicing of partial EMT and mesenchymal states during pancreatic cancer metastasis. We classified definitive tumor and normal epithelial cells via genetic aberrations and demonstrated dynamic changes in the epithelial-mesenchymal continuum in both epithelial cancer cells and CTCs. We provide the landscape of alternative splicing in CTCs at different stages of EMT, uncovering cell-type-specific splicing patterns and splicing events in cell surface proteins suitable for therapies. We show that MBNL1 governs cell fate through alternative splicing independently of changes in gene expression and affects the splicing pattern during EMT. We found a high frequency of events that contained multiple premature termination codons and were enriched with C and G nucleotides in close proximity, which influence the likelihood of stop codon readthrough and expand the range of potential therapeutic targets. Our study provides insights into the EMT transcriptome's dynamic changes and identifies potential diagnostic and therapeutic targets in pancreatic cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA