Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 134: 155973, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39241384

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and relapsing disease marked by chronic tissue inflammation that alters the integrity and function of the gut, seriously impacting patient health and quality of life. Aucklandiae Radix (AR), known as Mu Xiang in Chinese, is a traditional Chinese medicine documented in Chinese Pharmacopoeia with effects of strengthening the intestine and stopping diarrhea. However, the potential of AR in treating intestinal inflammation and its underlying mechanism have yet to be further elucidated. PURPOSE: The objective of this study was to explore the protective effect and the potential mechanism attributable to AR for treating ulcerative colitis (UC). STUDY DESIGN AND METHODS: A murine model of UC was constructed using dextran sulfate sodium (DSS) to examine the therapeutic potential of AR in alleviating inflammation and modulating the immune response. Advanced techniques such as photocrosslinking target fishing technique, click chemistry, Western blot analysis, real-time quantitative PCR, flow cytometry, immunofluorescence, and immunohistochemistry were employed to unveil the therapeutic mechanism of AR for treating IBD. RESULTS: AR decreased disease activity index (DAI) score to alleviate the course of IBD through ameliorating intestinal barrier function in DSS-induced mice. Furthermore, AR suppressed NF-κB and NLRP3 pathways to reduce the release of pro-inflammatory factors interleukin-6 and 1ß (IL-6 and IL-1ß) and tumor necrosis factor α (TNF-α), allowing to alleviate the inflammatory response. Flow cytometry revealed that AR could reduce the accumulation of intestinal macrophages and neutrophils, maintaining intestinal immune balance by regulating the ratio of Treg to Th17 cells. It was worth noting that pyruvate kinase isozyme type M2 (PKM2) served as a potential target of AR using the photocrosslinking target fishing technology, which was further supported by cellular thermal shift assay (CETSA), drug affinity target stability (DARTS), and PKM2 knockdown experiments. CONCLUSION: AR targeted PKM2 to inhibit NF-κB and NLRP3 pathways, thereby modulating the inflammatory response and immunity to alleviate DSS-induced UC. These findings suggested the potential of AR in the treatment of UC and AR as a candidate for developing PKM2 regulators.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Piruvato Quinasa , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Ratones , Piruvato Quinasa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones Endogámicos C57BL , Masculino , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo
2.
Immun Inflamm Dis ; 12(9): e1371, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222043

RESUMEN

OBJECTIVE: To examine the relationship between C-reactive protein (CRP) and knee pain, and further explore whether this association is mediated by obesity. METHODS: The population was derived from 1999 to 2004 National Health and Nutrition Examination Survey. Logistic regression was used to analyze the relationship between CRP and knee pain in three different models, and the linear trend was analyzed. A restricted cubic spline model to assess the nonlinear dose-response relationship between CRP and knee pain. Mediation analyses were used to assess the potential mediating role of obesity. Subgroup analyses and sensitivity analyses were performed to ensure robustness. RESULTS: Compared with adults with lower CRP (first quartile), those with higher CRP had higher risks of knee pain (odds ratio 1.39, 95% confidence interval 1.12-1.72 in third quartile; 1.56, 1.25-1.95 in fourth quartile) after adjusting for covariates (except body mass index [BMI]), and the proportion mediated by BMI was 76.10% (p < .001). BMI and CRP were linear dose-response correlated with knee pain. The odds ratio for those with obesity compared with normal to knee pain was 2.27 (1.42-3.65) in the first quartile of CRP, 1.99 (1.38-2.86) in the second, 2.15 (1.38-3.33) in the third, and 2.92 (1.72-4.97) in the fourth. CONCLUSION: Obesity mediated the systemic inflammation results in knee pain in US adults. Moreover, higher BMI was associated with higher knee pain risk in different degree CRP subgroups, supporting an important role of weight loss in reducing knee pain caused by systemic inflammation.


Asunto(s)
Índice de Masa Corporal , Proteína C-Reactiva , Encuestas Nutricionales , Obesidad , Humanos , Obesidad/sangre , Obesidad/epidemiología , Obesidad/complicaciones , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Adulto , Articulación de la Rodilla , Dolor/epidemiología , Dolor/sangre , Dolor/etiología , Artralgia/sangre , Artralgia/epidemiología , Artralgia/etiología , Anciano , Factores de Riesgo , Oportunidad Relativa
3.
J Med Chem ; 67(17): 15509-15520, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39189331

RESUMEN

The occurrence of depression is closely related to the decrease in serotonin (5-HT) levels in the synaptic cleft. Designing negative regulators aiming at intervening in MAO-A and serotonin transporter (SERT) could work synergistically to elevate synaptic 5-HT levels and thus might exhibit superior antidepressant efficacy. By linking the lead compound oxoisoaporphine to various nitric oxide donors, we endeavored to design and synthesize 10 synergistic negative regulators. The overarching objective was to maintain the original inhibitory effect on MAO-A while concurrently mitigating SERT-mediated reuptake of 5-HT. Within the spectrum of inhibitory compounds, I7 showcased the most formidable neuroprotective efficacy in a cellular depression model. In vivo experiments demonstrated that I7 significantly improved depressive behavior in both zebrafish and mice. Further research indicated that the antidepressant mechanism of I7 was associated with the downregulation of both MAO-A and SERT.


Asunto(s)
Antidepresivos , Aporfinas , Monoaminooxidasa , Óxido Nítrico , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Pez Cebra , Animales , Humanos , Masculino , Ratones , Antidepresivos/farmacología , Antidepresivos/química , Antidepresivos/síntesis química , Aporfinas/farmacología , Aporfinas/química , Aporfinas/síntesis química , Depresión/tratamiento farmacológico , Depresión/metabolismo , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/síntesis química , Óxido Nítrico/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Relación Estructura-Actividad
4.
J Med Chem ; 67(16): 14329-14344, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091011

RESUMEN

As an oleanolic acid derivative, CDDO-Me lacks selectivity for tumors. Based on the high reactive oxygen species (ROS) level in cancer cells, compound 4 was selected from 17 new CDDO arylboronate ester derivatives. A preliminary study revealed that 4 displayed the highest selectivity for cancer cells. Furthermore, 4 could be transformed to 4H by ROS to increase its covalent binding ability and antiproliferation effect (IC50 of 2.11 vs 0.37 µM) in BGC-823 cells. Interestingly, 4 increased ROS levels to induce apoptosis in BGC-823 cells. Moreover, the LD50 of 4 (91.2 mg/kg) was much greater than that of CDDO-Me (61.7 mg/kg) in ICR mice. A pharmacokinetic study indicated that 4 could be transformed to 4H in vivo. In addition, 4 exhibited a greater tumor inhibition rate (86.2%) than CDDO-Me (51.7%). Overall, the design of 4 provided an effective modification strategy for CDDO to increase the selectivity for cancer cells.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Ratones Endogámicos ICR , Ácido Oleanólico , Animales , Humanos , Masculino , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ésteres/química , Ésteres/farmacología , Ésteres/síntesis química , Estructura Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Ácido Oleanólico/farmacocinética , Ácido Oleanólico/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Formamidas/química , Formamidas/farmacología , Etilaminas/química , Etilaminas/farmacología
5.
Scand J Gastroenterol ; : 1-10, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215699

RESUMEN

BACKGROUND: While dietary intervention was an important public health strategy for the prevention and intervention of metabolic dysfunction-associated fatty liver disease (MAFLD), the effect of diet-induced inflammation on MAFLD has not been studied in detail. Therefore, we aimed to analyze the relationship between dietary inflammatory index (DII) and MAFLD. METHODS: This study included data from the National Health and Nutrition Examination Survey 2017-2018. MAFLD was diagnosed based on the presence of hepatic steatosis, as determined by transient elastography, along with evidence of either overweight/obesity, type 2 diabetes mellitus, or metabolic dysfunction. DII was calculated using 27 dietary components collected through 24-hour dietary recall questionnaire. Weighted logistic regression was used to analyze the relationship between DII and MAFLD and its main components in three different models. Subgroup analyses were performed by age, sex, and alcohol use. RESULTS: A total of 1991 participants were included, and the MAFLD group had higher DII scores. After adjusting for age, sex, race, physical activity, smoking status, and alcohol use, the highest quartile of DII was associated with increased risk of MAFLD (OR:2.90, 95% CIs: 1.46, 5.75). Overweight/obesity, central obesity, low high density lipoprotein cholesterol (HDL-C) and high C-reactive protein (CRP) also shared the same characteristics in the main components of MAFLD. Results were consistent across subgroups (age, sex, and alcohol use). CONCLUSIONS: A higher DII diet was positively associated with the risk of MAFLD in American adults, particularly as related to overweight/obesity, central obesity, high CRP level, and low HDL-C level.

6.
Sci Total Environ ; 939: 173558, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38823700

RESUMEN

Center Pivot Irrigation system (CPIs) is widely used in newly exploited arable land in sandy lands. These sandy lands are currently stable because of climate change and ecological restoration efforts since the beginning of the 21st century in northern China. The exploitation of these fixed sandy lands to arable land with CPIs may affect the soil wind erosion, yet it remains unknown. The temporal changes of CPIs and its effect on wind erosion module were analyzed and modeled from 2000 to 2020 in Mu-Us sandy land using satellite images and Revised Wind Erosion Equation (RWEQ). The establishment of CPIs started from 2010, boomed in 2015 and peaked in 2020. They were mainly transformed from woodland, grassland, and barren land near rivers in east and southeast, and from cropland in inter-dunes in west and southwest of Mu-Us sandy land. The temporal and spatial pattern of CPIs well aligns with the land consolidation and requisition-compensation balance policies. In most of the Mu-Us sandy land, the annual erosion module is <25 t ha-1 a-1. Despite great variation, the annual, Winter and Spring erosion module of the Mu-Us sandy land or in Otog Qian and Yuyang, the CPIs concentrated counties, all decreased during 2000-2019. Although, wind erosion module in CPIs was lower than the surrounding area, it increased in 2019 given the same climate conditions as in 2010. Our results suggest 1) the establishment of CPIs in Mu-Us sandy land greatly depends on the local policy and natural endowment, and 2) although the set-up of CPIs showed no impact on the wind erosion with CPIs accounting for <1 % of Mu-Us sandy land, post-harvest of CPIs should be carefully concerned to prevent soil wind erosion.

7.
Biomater Sci ; 12(14): 3622-3632, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38855985

RESUMEN

Chemodynamic therapy (CDT) has outstanding potential as a combination therapy to treat cancer. However, the effectiveness of CDT in the treatment of solid tumors is limited by the overexpression of glutathione (GSH) in the tumor microenvironment (TME). GSH overexpression diminishes oxidative stress and attenuates chemotherapeutic drug-induced apoptosis in cancer cells. To counter these effects, a synergistic CDT/chemotherapy cancer treatment, involving the use of a multifunctional bioreactor of hollow manganese dioxide (HMnO2) loaded with cisplatin (CDDP), was developed. Metal nanoenzymes that can auto-degrade to produce Mn2+ exhibit Fenton-like, GSH-peroxidase-like activity, which effectively depletes GSH in the TME to attenuate the tumor antioxidant capacity. In an acidic environment, Mn2+ catalyzed the decomposition of intra-tumor H2O2 into highly toxic ·OH as a CDT. HMnO2 with large pores, pore volume, and surface area exhibited a high CDDP loading capacity (>0.6 g-1). Treatment with CDDP-loaded HMnO2 increased the intratumor Pt-DNA content, leading to the up-regulation of γ-H2Aχ and an increase in tumor tissue damage. The decreased GSH triggered by HMnO2 auto-degradation protected Mn2+-generated ·OH from scavenging to amplify oxidative stress and enhance the efficacy of CDT. The nanoenzymes with encapsulated chemotherapeutic agents deplete GSH and remodel the TME. Thus, tumor CDT/chemotherapy combination therapy is an effective therapeutic strategy.


Asunto(s)
Antineoplásicos , Cisplatino , Glutatión , Compuestos de Manganeso , Manganeso , Óxidos , Glutatión/metabolismo , Cisplatino/farmacología , Cisplatino/química , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Manganeso/química , Animales , Óxidos/química , Óxidos/farmacología , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología
8.
iScience ; 27(5): 109818, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38766356

RESUMEN

Allergic asthma is a chronic non-communicable disease characterized by lung tissue inflammation. Current treatments can alleviate the clinical symptoms to some extent, but there is still no cure. Recently, the transplantation of mesenchymal stem cells (MSCs) has emerged as a potential approach for treating allergic asthma. Gingival-derived mesenchymal stem cells (GMSCs), a type of MSC recently studied, have shown significant therapeutic effects in various experimental models of autoimmune diseases. However, their application in allergic diseases has yet to be fully elucidated. In this study, using an OVA-induced allergic asthma model, we demonstrated that GMSCs decrease CD11b+CD11c+ proinflammatory dendritic cells (DCs), reduce Th2 cells differentiation, and thus effectively diminish eosinophils infiltration. We also identified that the core functional factor, hepatocyte growth factor (HGF) secreted by GMSCs, mediated its effects in relieving airway inflammation. Taken together, our findings indicate GMSCs as a potential therapy for allergic asthma and other related diseases.

9.
Adv Mater ; 36(24): e2313752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38576272

RESUMEN

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.

10.
J Adv Res ; 58: 79-91, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37169220

RESUMEN

INTRODUCTION: Rheumatoid arthritis (RA) is a systemic autoimmune disease with limited treatment success, characterized by chronic inflammation and progressive cartilage and bone destruction. Accumulating evidence has shown that neutrophil extracellular traps (NETs) released by activated neutrophils are important for initiating and perpetuating synovial inflammation and thereby could be a promising therapeutic target for RA. K/B × N serum transfer-induced arthritis (STIA) is a rapidly developed joint inflammatory model that somehow mimics the inflammatory response in patients with RA. Human gingival-derived mesenchymal stem cells (GMSCs) have been previously shown to possess immunosuppressive effects in arthritis and humanized animal models. However, it is unknown whether GMSCs can manage neutrophils in autoimmune arthritis. OBJECTIVES: To evaluate whether infusion of GMSCs can alleviate RA by regulating neutrophils and NETs formation. If this is so, we will explore the underlying mechanism(s) in an animal model of inflammatory arthritis. METHODS: The effects of GMSCs on RA were assessed by comparing the symptoms of the K/B × N serum transfer-induced arthritis (STIA) model administered either with GMSCs or with control cells. Phenotypes examined included clinical scores, rear ankle thickness, paw swelling, inflammation, synovial cell proliferation, and immune cell frequency. The regulation of GMSCs on NETs was examined through immunofluorescence and immunoblotting in GMSCs-infused STIA mice and in an in vitro co-culture system of neutrophils with GMSCs. The molecular mechanism(s) by which GMSCs regulate NETs was explored both in vitro and in vivo by silencing experiments. RESULTS: We found in this study that adoptive transfer of GMSCs into STIA mice significantly ameliorated experimental arthritis and reduced neutrophil infiltration and NET formation. In vitro studies also showed that GMSCs inhibited the generation of NETs in neutrophils. Subsequent investigations revealed that GMSCs secreted prostaglandin E2 (PGE2) to activate protein kinase A (PKA), which ultimately inhibited the downstream extracellular signal-regulated kinase (ERK) pathway that is essential for NET formation. CONCLUSION: Our results demonstrate that infusion of GMSCs can ameliorate inflammatory arthritis mainly by suppressing NET formation via the PGE2-PKA-ERK signaling pathway. These findings further support the notion that the manipulation of GMSCs is a promising stem cell-based therapy for patients with RA and other autoimmune and inflammatory diseases.


Asunto(s)
Artritis Reumatoide , Trampas Extracelulares , Humanos , Animales , Ratones , Trampas Extracelulares/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Dinoprostona/uso terapéutico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Inflamación/metabolismo
11.
Redox Biol ; 69: 103008, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142586

RESUMEN

Focal iron overload is frequently observed in patients with rheumatoid arthritis (RA), yet its functional significance remains elusive. Herein, we report that iron deposition in lesion aggravates arthritis by inducing macrophage ferroptosis. We show that excessive iron in synovial fluid positively correlates with RA disease severity as does lipid hyperoxidation of focal monocyte/macrophages. Further study reveals high susceptibility to iron induced ferroptosis of the anti-inflammatory macrophages M2, while pro-inflammatory M1 are less affected. Distinct glutathione peroxidase 4 (GPX4) degradation depending on p62/SQSTM1 in the two cell types make great contribution mechanically. Of note, ferroptosis inhibitor liproxstatin-1 (LPX-1) can alleviate the progression of K/BxN serum-transfer induced arthritis (STIA) mice accompanied with increasing M2 macrophages proportion. We thus propose that the heterogeneous ferroptosis susceptibility of macrophage subtypes as well as consequent inflammation and immune disorders are potential biomarkers and therapeutic targets in RA.


Asunto(s)
Artritis Reumatoide , Ferroptosis , Sobrecarga de Hierro , Humanos , Ratones , Animales , Artritis Reumatoide/metabolismo , Macrófagos/metabolismo , Sobrecarga de Hierro/patología , Hierro/metabolismo
12.
Bioorg Med Chem ; 96: 117530, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956506

RESUMEN

A number of NO-releasing quinoline derivatives have been designed and synthesized by introducing NO donor to quinoline carboxylic acid fragment. The anti-proliferation of all target compounds was evaluated against human cancer cell lines (HCT-116, MCF-7, and A549), MCF-7/ADR and normal cell (MCF-10A). Most compounds showed cytotoxic activity on cancer cells and drug-resistant cells with IC50 values in the range of 0.62-5.51 µM. Importantly, these compounds showed low toxicity to normal cells (4.21-34.08 µM). Further mechanism studies showed that the most potent compound 9 could release high concentration of NO and inhibit the activity of topoisomerase I. In addition, 9 regulated apoptosis-related proteins, generated ROS and blocked MCF-7 cells in G2/M phase to induce cell apoptosis. Furthermore, the P-gp-mediated transport was also influenced by 9. And 9 could significantly inhibit the growth of tumor in vivo without observable organ-related toxicities. Overall, as a novel NO-releasing quinoline derivative, 9 was worthy for further in-depth study.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Quinolinas , Humanos , Femenino , ADN-Topoisomerasas de Tipo I/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Apoptosis , Quinolinas/farmacología , Células MCF-7 , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Relación Estructura-Actividad
13.
Biomed Pharmacother ; 169: 115886, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37992572

RESUMEN

IL-2 inducible T cell kinase (ITK) is critical in T helper subset differentiation and its inhibition has been suggested for the treatment of T cell-mediated inflammatory diseases. T follicular helper (Tfh), Th17 and regulatory T cells (Treg) also play important roles in the development of rheumatoid arthritis (RA), while the role of ITK in the development of RA and the intricate balance between effector T and regulatory T cells remains unclear. Here, we found that CD4+ T cells from RA patients presented with an elevated ITK activation. ITK inhibitor alleviated existing collagen-induced arthritis (CIA) and reduced antigen specific antibody production. Blocking ITK kinase activity interferes Tfh cell generation. Moreover, ITK inhibitor effectively rebalances Th17 and Treg cells by regulating Foxo1 translocation. Furthermore, we identified dihydroartemisinin (DHA) as a potential ITK inhibitor, which could inhibit PLC-γ1 phosphorylation and the progression of CIA by rebalancing Th17 and Treg cells. Out data imply that ITK activation is upregulated in RA patients, and therefore blocking ITK signal may provide an effective strategy to treat RA patients and highlight the role of ITK on the Tfh induction and RA progression.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Enfermedades Autoinmunes , Animales , Humanos , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Diferenciación Celular , Linfocitos T Reguladores , Células Th17
14.
Infect Drug Resist ; 16: 7165-7174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023407

RESUMEN

Purpose: This retrospective cohort study aimed to evaluate the clinical efficacy of ulinastatin (UTI) and azithromycin (AZM) combination therapy in treating severe pneumonia in children and its impact on inflammatory cytokines and oxidative stress. Patients and Methods: This retrospective cohort study was conducted from January 1, 2019, to January 1, 2021, involving pediatric patients diagnosed with severe mycoplasma pneumonia (SMPP). The pediatric patients were divided into two groups: those receiving UTI and AZM combination therapy (treatment group) and those receiving azithromycin alone (control group). We compared the two groups regarding clinical data, disease outcomes, inflammatory cytokines, and oxidative stress levels. Results: Baseline characteristics did not significantly differ between the two groups. UTI, in combination with AZM, significantly improved blood oxygen levels, inflammatory infection markers, and relevant clinical symptoms in patients with SMPP on the 3rd day of treatment. Additionally, it significantly reduced the levels of inflammatory cytokines TNF-a, IL-6, IL-1ß, and IL-10, as well as oxidative stress markers GSH and SOD. Conclusion: Combining UTI and AZM can rapidly alleviate clinical symptoms and effectively control the progression of patients with SMPP. Therefore, this treatment approach deserves consideration for clinical promotion and utilization.

15.
Comput Biol Med ; 166: 107432, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37729701

RESUMEN

BACKGROUND: The development and progression of colorectal cancer (CRC) is closely associated with its complex tumor microenvironment (TME). Assessment of the modified pattern of immune cell infiltration (ICI) will help increase knowledge regarding the characteristics of TME infiltration. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) has been shown to have positive effects on the regulation of the immune microenvironment of CRC. However, its pharmacological targets and molecular mechanisms remain to be elucidated. METHODS: Network pharmacological analysis was used to identify the target of YYFZBJS in the TME of CRC. Patients with the immune-inflamed phenotype (IIP) were identified using CRC samples from The Cancer Genome Atlas (TCGA) database. Consensus genes were identified by intersecting YYFZBJS targets, CRC disease targets and differentially expressed genes in the CRC microenvironment. Then, least absolute shrinkage and selection operator (LASSO) Cox analyses were used to identify a prognostic signature from the consensus genes. Cytoscape software was further used to build a unique herb-compound-target network diagram of the important components of YYFZBJS and prognostic gene targets. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed using the prognostic gene sets to explore the molecular mechanism of the prognostic genes in drug therapy for CRC IIP patients. Finally, single-cell analysis was performed to validate the expression of the prognostic genes in the TME of CRC using the TISCH2 database. RESULTS: A total of 284 IIP patients were identified from 480 patients with CRC. A total of 35 consensus genes were identified as targets of YYFZBJS in the TME of CRC patients. An eleven-gene prognostic signature, including PIK3CG, C5AR1, PRF1, CAV1, HPGDS, PTGS2, SERPINE1, IDO1, TGFB1, CXCR2 and MMP9, was identified from the consensus genes, with areas under the receiver operating characteristic (ROC) curve (AUCs) values of 0.84 and 0.793 for the training and test cohorts, respectively. In the herb-compound-target network, twenty-four compounds were shown to interact with the 11 prognostic genes, which were significantly enriched in the IL-17 signaling, arachidonic acid metabolism and metabolic pathways. Single-cell analysis of the prognostic genes confirmed that their abnormal expression was associated with the TME of CRC. CONCLUSION: This study organically integrated network pharmacology and bioinformatics analyses to identify prognostic genes in CRC IIP patients from the targets of YYFZBJS. Although this data mining work was limited to the study of mechanisms related to prognosis based on the immune microenvironment, the methodology provides new perspectives in the search for novel therapeutic targets of traditional Chinese medicines (TCMs) and accurate diagnostic indicators of cancers targeted by TCMs.

16.
J Med Chem ; 66(17): 12446-12458, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37602711

RESUMEN

Twelve new hybrid compounds of Esculetin with nitric oxide (NO) donors and/or mitochondrial targeting groups were designed, synthesized, and evaluated for their anti-tumor activity and mechanism in vitro and in vivo. Notably, the most potent compound A11 exhibited nanomolar antiproliferative activity on triple-negative breast cancer (TNBC) MDA-MB-231 cells (IC50 = 8 nM) with a strikingly selective inhibitory effect. The mechanism of A11 involves targeting MDA-MB-231 cells' mitochondria, releasing a high NO concentration, and increasing the expression of cyclophilin D (CypD), leading to increased reactive oxygen species (ROS) and triggering cancer cell apoptosis. Additionally, A11 could arrest the cell cycle at the G2/M phase to achieve anti-tumor effects. Moreover, A11 demonstrated a superior TNBC inhibition rate and diminished toxicity relative to doxorubicin (DOX) in vivo. In summary, A11 serves as a noteworthy contender for TNBC treatment with high potency and minimal toxicity.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Apoptosis , Ciclo Celular , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico
17.
Plant Mol Biol ; 112(6): 293-307, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37507516

RESUMEN

Long noncoding RNAs (lncRNAs) participate in plant biological processes under biotic and abiotic stresses. However, little is known about the function and regulation mechanism of lncRNAs related to the pathogen at a molecular level. A banana lncRNA, Malnc2310, is a Fusarium oxysporum f. sp. cubense inducible lncRNA in roots. In this study, we demonstrate the nuclear localization of Malnc2310 by fluorescence in situ hybridization and it can bind to several proteins that are related to flavonoid pathway, pathogen response and programmed cell death. Overexpression of Malnc2310 increases susceptibility to Fusarium crude extract (Fu), salinity, and cold in transgenic Arabidopsis. In addition, Malnc2310 transgenic Arabidopsis accumulated more anthocyanins under Fusarium crude extract and cold treatments that are related to upregulation of these genes involved in anthocyanin biosynthesis. Based on our findings, we propose that Malnc2310 may participate in flavonoid metabolism in plants under stress. Furthermore, phenylalanine ammonia lyase (PAL) protein expression was enhanced in Malnc2310 overexpressed transgenic Arabidopsis, and Malnc2310 may participate in PAL regulation by binding to it. This study provides new insights into the role of Malnc2310 in mediating plant stress adaptation.


Asunto(s)
Arabidopsis , Fusarium , Musa , ARN Largo no Codificante , ARN Largo no Codificante/genética , Fusarium/fisiología , Musa/genética , Arabidopsis/genética , Antocianinas , Hibridación Fluorescente in Situ , Enfermedades de las Plantas/genética , Mezclas Complejas
18.
J Med Chem ; 66(13): 9184-9200, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37386884

RESUMEN

Activating Nrf2 through inhibiting Keap1 has been proven to alleviate oxidative stress and related diseases, including nonalcoholic fatty liver disease (NAFLD). Traditional Keap1 inhibitors could not avoid the "off-target" effects, but using proteolysis targeting chimera (PROTAC) technology to induce Keap1 degradation might be an effective strategy to find potential NAFLD improving agents. Thus, several PROTACs were designed and synthesized by harnessing CDDO as the Keap1 ligand in this study. PROTAC I-d exhibited optimal Keap1 degradation activity, which could increase the Nrf2 level and alleviate oxidative stress in free fatty acid-induced AML12 cells and the liver of mice fed with a methionine-choline-deficient diet. Moreover, compared with CDDO, PROTAC I-d displayed significant advantages in inhibiting hepatic steatosis, steatohepatitis, and fibrosis in the in vivo and in vitro models of NAFLD. In addition, PROTAC I-d also showed lower in vivo toxicity than CDDO. All these results suggested that PROTAC I-d might be a potential improving agent for NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hígado , Estrés Oxidativo , Ratones Endogámicos C57BL
19.
Nat Commun ; 14(1): 3199, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268632

RESUMEN

Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.

20.
Mol Oral Microbiol ; 38(4): 275-288, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37006135

RESUMEN

Porphyromonas gingivalis is a keystone pathogen in periodontitis. Our previous study indicated that periodontitis induced by P. gingivalis increased the percentage of CD19+ B cells but decreased the ratio of IL-10-producing regulatory B cells (B10) in collagen-induced arthritis (CIA) mice. It is still unclear which virulence factors of P. gingivalis are involved in these processes. Here, we compared the effects of different components of P. gingivalis on the biogenesis of B10 cells and found that the decreased proportion of B10 cells mainly resulted from the undenatured proteins other than the DNA, RNA, or lipopolysaccharides of P. gingivalis. As gingipains are enzymes and virulence factors that play a vital role in the progression in periodontitis through affecting the innate and adaptive immune system, we then compared the influence of the wild-type (WT) strain of P. gingivalis (ATCC 33277) and its isogenic gingipain-null mutant (∆K∆RAB) on the differentiation of splenic B cells into B10 cells. Interestingly, compared to WT strain, ∆K∆RAB treatment increased the frequency of B10 cells as well as the expression of IL-6 in B cells. Furthermore, the acute peritonitis, an ideal model for the quick evaluation of immune effects of agents, induced by ∆K∆RAB, showed the higher IL-6 production and proportion of B10 cells compared with WT. Finally, we performed transcriptomic analysis to better understand the effects and possible mechanisms of gingipains on B cells. Compared with WT, ∆K∆RAB upregulated the PI3K-Akt pathway of B cells, which is important for IL-10 production and B10 cell biogenesis, and more activated Jak-STAT pathway, which is a classical signaling pathway mediated by IL-6. Cumulatively, this study preliminarily revealed that gingipains of P. gingivalis are vital virulence factors downregulating B10 cells and altering immune responses.


Asunto(s)
Periodontitis , Porphyromonas gingivalis , Animales , Ratones , Cisteína-Endopeptidasas Gingipaínas/metabolismo , Factores de Virulencia/metabolismo , Interleucina-10/metabolismo , Interleucina-6 , Fosfatidilinositol 3-Quinasas/metabolismo , Quinasas Janus/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA