Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(20): e2306703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561967

RESUMEN

The dermis and epidermis, crucial structural layers of the skin, encompass appendages, hair follicles (HFs), and intricate cellular heterogeneity. However, an integrated spatiotemporal transcriptomic atlas of embryonic skin has not yet been described and would be invaluable for studying skin-related diseases in humans. Here, single-cell and spatial transcriptomic analyses are performed on skin samples of normal and hairless fetal pigs across four developmental periods. The cross-species comparison of skin cells illustrated that the pig epidermis is more representative of the human epidermis than mice epidermis. Moreover, Phenome-wide association study analysis revealed that the conserved genes between pigs and humans are strongly associated with human skin-related diseases. In the epidermis, two lineage differentiation trajectories describe hair follicle (HF) morphogenesis and epidermal development. By comparing normal and hairless fetal pigs, it is found that the hair placode (Pc), the most characteristic initial structure in HFs, arises from progenitor-like OGN+/UCHL1+ cells. These progenitors appear earlier in development than the previously described early Pc cells and exhibit abnormal proliferation and migration during differentiation in hairless pigs. The study provides a valuable resource for in-depth insights into HF development, which may serve as a key reference atlas for studying human skin disease etiology using porcine models.


Asunto(s)
Folículo Piloso , Transcriptoma , Animales , Porcinos/genética , Porcinos/embriología , Folículo Piloso/metabolismo , Folículo Piloso/embriología , Folículo Piloso/crecimiento & desarrollo , Transcriptoma/genética , Análisis de la Célula Individual/métodos , Piel/metabolismo , Piel/embriología , Diferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Humanos , Ratones
2.
BMC Complement Med Ther ; 24(1): 158, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610025

RESUMEN

BACKGROUND: A triplet chemotherapy regimen of docetaxel, cisplatin, and 5-fluorouracil (TPF) is used to treat head and neck squamous cell carcinoma; however, it is toxic to bone marrow mesenchymal stem cells (BMSCs). We previously demonstrated that Ganoderma spore lipid (GSL) protect BMSCs against cyclophosphamide toxicity. In this study, we investigated the protective effects of GSL against TPF-induced BMSCs and hematopoietic damage. METHODS: BMSCs and C57BL/6 mice were divided into control, TPF, co-treatment (simultaneously treated with GSL and TPF for 2 days), and pre-treatment (treated with GSL for 7 days before 2 days of TPF treatment) groups. In vitro, morphology, phenotype, proliferation, senescence, apoptosis, reactive oxygen species (ROS), and differentiation of BMSCs were evaluated. In vivo, peripheral platelets (PLTs) and white blood cells (WBCs) from mouse venous blood were quantified. Bone marrow cells were isolated for hematopoietic colony-forming examination. RESULTS: In vitro, GSL significantly alleviated TPF-induced damage to BMSCs compared with the TPF group, recovering their morphology, phenotype, proliferation, and differentiation capacity (p < 0.05). Annexin V/PI and senescence-associated ß-galactosidase staining showed that GSL inhibited apoptosis and delayed senescence in TPF-treated BMSCs (p < 0.05). GSL downregulated the expression of caspase-3 and reduced ROS formation (p < 0.05). In vivo, GSL restored the number of peripheral PLTs and WBCs and protected the colony-forming capacity of bone marrow cells (p < 0.05). CONCLUSIONS: GSL efficiently protected BMSCs from damage caused by TPF and recovered hematopoiesis.


Asunto(s)
Antineoplásicos , Ganoderma , Células Madre Mesenquimatosas , Animales , Ratones , Ratones Endogámicos C57BL , Docetaxel , Cisplatino , Especies Reactivas de Oxígeno , Esporas Fúngicas , Hematopoyesis , Fluorouracilo , Lípidos
3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279206

RESUMEN

Sophoridine (SRP) is a natural quinolizidine alkaloid found in many traditional Chinese herbs, though its effect on adipose tissue is unclear. We improved serum lipid levels by administering SRP by gavage in high-fat diet (HFD)-fed C57BL/6 mice. After 11 weeks, SRP supplementation significantly reduced body weight gain and improved glucose homeostasis, while reducing subcutaneous fat and liver weight. SRP also inhibited cell proliferation and differentiation of 3T3-L1 cells. Proteomics analysis revealed that SRP inhibits adipocyte differentiation by interacting with Src, thereby suppressing vascular endothelial growth factor receptor 2 (VEGFR2) expression and PI3K/AKT phosphorylation. This study provides an empirical basis for the treatment of obesity with small molecules.


Asunto(s)
Matrinas , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adipocitos/metabolismo , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Células 3T3-L1 , Adipogénesis
4.
Genes (Basel) ; 14(4)2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-37107619

RESUMEN

Reproductive traits have a key impact on production efficiency in the pig industry. It is necessary to identify the genetic structure of potential genes that influence reproductive traits. In this study, a genome-wide association study (GWAS) based on chip and imputed data of five reproductive traits, namely, total number born (TNB), number born alive (NBA), litter birth weight (LBW), gestation length (GL), and number of weaned (NW), was performed in Yorkshire pigs. In total, 272 of 2844 pigs with reproductive records were genotyped using KPS Porcine Breeding SNP Chips, and then chip data were imputed to sequencing data using two online software programs: the Pig Haplotype Reference Panel (PHARP v2) and Swine Imputation Server (SWIM 1.0). After quality control, we performed GWAS based on chip data and the two different imputation databases by using fixed and random model circulating probability unification (FarmCPU) models. We discovered 71 genome-wide significant SNPs and 25 potential candidate genes (e.g., SMAD4, RPS6KA2, CAMK2A, NDST1, and ADCY5). Functional enrichment analysis revealed that these genes are mainly enriched in the calcium signaling pathway, ovarian steroidogenesis, and GnRH signaling pathways. In conclusion, our results help to clarify the genetic basis of porcine reproductive traits and provide molecular markers for genomic selection in pig breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Reproducción , Porcinos/genética , Animales , Fenotipo , Reproducción/genética , Genoma/genética , Genotipo
5.
Front Microbiol ; 14: 1116022, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937296

RESUMEN

In pig production, reducing production costs and improving immunity are important. Grape pomace, a good agricultural by-product, has been thrown away as food waste for a long time. Recently, we found that it could be used as a new source of pig feed. We investigated the effect of grape pomace on inflammation, gut barrier function, meat quality, and growth performance in finishing pigs. Our results indicated that treatment samples showed a significant decrease in water loss, IL-1ß, DAO, ROS, and MDA content (p < 0.05). IgA, IgG, IgM, CAT, T-AOC, SOD, and IFN-γ significantly increased compared with those in control samples (p < 0.05). Meanwhile, the relative mRNA expression of the tight junction protein occludin showed a significant difference (p < 0.05). Analysis of metagenomic sequencing indicated that grape pomace significantly decreased the relative abundance of Treponema and Streptococcus (p < 0.05). In summary, our results demonstrated that grape pomace could improve meat quality, alleviate inflammation, and decrease oxidative stress.

6.
Food Res Int ; 166: 112550, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914311

RESUMEN

Intramuscular fat (IMF) content, which is an important determinant of meat quality characteristics such as tenderness, juiciness and flavor, has long been a research hotspot. Chinese local pig breeds are famous for their excellent meat quality which is mainly reflected in the high IMF content, strong hydraulic system and et al. However, there are few analysis of meat quality by omics methods. In our study, we identified 12 different fatty acids, 6 different amino acids, 1,262 differentially expression genes (DEGs), 140 differentially abundant proteins (DAPs) and 169 differentially accumulated metabolites (DAMs) (p < 0.05) with metabolome, transcriptome, and proteome. It has been found that DEGs, DAPs and DAMs were enriched in the Wnt signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and Ras signaling pathway which were related to meat quality. Moreover, our Weighted genes co-expression network construction (WGCNA) showed RapGEF1 was the key gene related to IMF content and the RT-qPCR analysis was used to perform validation of the significant genes. In summary, our study provided both fundamental data and new insights to further uncover the secret of pig IMF content.


Asunto(s)
Proteoma , Transcriptoma , Porcinos/genética , Animales , Fosfatidilinositol 3-Quinasas/genética , Carne/análisis , Redes Reguladoras de Genes
7.
Chemosphere ; 316: 137766, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36623600

RESUMEN

Biochar, as an adsorbent, is widely used for the removal of organic pollutants in water body. Hence, after saturated adsorption, regeneration treatment is required to recover the adsorption performance of biochar. In this study, a biochar (P-GBC) prepared by phosphoric acid activation showed high adsorption capacity for methylene blue (MB) with the maximum adsorption capacity (Qm) of 599.66 mg/g. Then, regeneration treatments using 4 mM peroxymonosulfate (PMS), 0.2 M hydrogen peroxide (H2O2) and their mixture were used to regenerate MB-saturated biochar with regeneration efficiencies of 58.24%, 66.01% and 94.88%, respectively. Combining with degradation and quenching experiments, it is found that synergistic effect of H2O2 desorption and PMS degradation is responsible for the enhancement of regeneration efficiency of P-GBC in H2O2-PMS system and enables a high mineralization rate of 82.68% for the MB adsorbed on P-GBC. Furthermore, EPR tests indicate that singlet oxygen (1O2) is assigned as the primary activate species for the degradation of MB and XPS analyses confirm that graphite nitrogen and carbonyl on P-GBC are the main active sites for the activation of PMS. Compared with conventional regenerants, H2O2-PMS system has the advantages of low dosage, high mineralization efficiency, and easy accessibility, and is also effective, sustainable and environmentally friendly for the regeneration of organic pollutants-saturated biochar.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Azul de Metileno/química , Peróxidos/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis
8.
Artículo en Inglés | MEDLINE | ID: mdl-36554671

RESUMEN

Biochar loading mixed-phase iron oxide shows great advantages as a promising catalyst owing to its eco-friendliness and low cost. Here, γ-Fe2O3-x@biochar (E/Fe-N-BC) composite was successfully prepared by the sol-gel method combined with low-temperature (280 °C) reduction. The Scanning Electron Microscope (SEM) result indicated that γ-Fe2O3-x particles with the size of approximately 200 nm were well-dispersed on the surface of biochar. The CO derived from biomass pyrolysis is the main reducing component for the generation of Fe (II). The high content of Fe (II) contributed to the excellent catalytic performance of E/Fe-N-BC for quinclorac (QNC) degradation in the presence of peroxymonosulfate (PMS). The removal efficiency of 10 mg/L of QNC was 100% within 30 min using 0.3 g/L γ-Fe2O3-x@biochar catalyst and 0.8 mM PMS. The radical quenching experiments and electron paramagnetic resonance analysis confirmed that •OH and SO4•- were the main radicals during the degradation of QNC. The facile and easily mass-production of γ-Fe2O3-x@biochar with high catalytic activity make it a promising catalyst to activate PMS for the removal of organic pollutants.


Asunto(s)
Carbón Orgánico , Temperatura
9.
J Agric Food Chem ; 70(33): 10248-10258, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35968935

RESUMEN

Amino acid sensing plays an important role in regulating lipid metabolism by sensing amino acid nutrient disturbance. T1R1 (umami taste receptor, type 1, member 1) is a membrane G protein-coupled receptor that senses amino acids. Tas1r1-knockout (KO) mice were used to explore the function of umami receptors in lipid metabolism. Compared with wild-type (WT) mice, Tas1r1-KO mice showed decreased fat mass (P < 0.05) and adipocyte size, lower liver triglyceride (7.835 ± 0.809 vs 12.463 ± 0.916 mg/g WT, P = 0.013) and total cholesterol levels (0.542 ± 0.109 vs 1.472 ± 0.044 mmol/g WT, P < 0.001), and reduced lipogenesis gene expressions in adipose and liver tissues. Targeted liver amino acid metabolomics showed that the amino acid content of Tas1r1-KO mice was significantly decreased, which was consistent with the branched-chain ketoacid dehydrogenase protein levels. Proteomics analysis showed that the upregulated proteins were enriched in lipid and steroid metabolism pathways, and parallel reaction monitoring results illustrated that Tas1r1 ablation promoted lipid catabolism through oxysterol 7 α-hydroxylase and insulin-like growth factor binding protein 2. In summary, Tas1r1 disruption in mice could reduce lipid accumulation by reducing de novo lipid synthesis and improving lipid catabolism.


Asunto(s)
Lipogénesis , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos/metabolismo , Animales , Hígado/metabolismo , Ratones , Ratones Noqueados , Triglicéridos/metabolismo
10.
J Sep Sci ; 45(15): 2855-2864, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35671063

RESUMEN

Coptis chinensis inflorescence is a by-product of Coptis chinensis Franch and riches in alkaloids. We screened the bioactive compounds in the by-product through an immobilized peroxisome proliferator-activated receptor gamma. The receptor was covalently immobilized on the macroporous silica gel through amino groups to generate the affinity stationary phase and was applied for screening. Berberine, palmatine, and jatrorrhizine were identified as the retained components of the herb on the affinity column. We evaluated the binding of the three bioactive compounds with the receptor by nonlinear chromatography and molecular docking. The affinities of the compounds to the receptor were (1.42 ± 0.10) ×108 /M, (4.88 ± 0.38) ×107 /M, and (1.65 ± 0.13) ×107 /M for berberine, palmatine, and jatrorrhizine, with dissociation rate constants of (17.70 ± 0.03) ×10-3 /S, (5.18 ± 0.25) ×10-2 /S, and (15.7 ± 0.05) ×10-2 /S, respectively. Cys285, Arg288, Ile326, Leu330, and His449 in the agonist binding pocket of the receptor participated in the formation of bioactive compound-receptor conjugates. These data indicated that the immobilized receptor is a reliable alternative for screening the bioactive compounds. In addition, Coptis chinensis inflorescence has the potential to be a source for drug discovery.


Asunto(s)
Berberina , Coptis , Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Coptis/química , Coptis chinensis , Medicamentos Herbarios Chinos/análisis , Inflorescencia/química , Simulación del Acoplamiento Molecular , PPAR gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA