Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885695

RESUMEN

Oligosaccharides have myriad functions throughout biology.1,2 To investigate these functions requires multi-step chemical synthesis of these structurally complex molecules. With a dense concentration of stereocentres and hydroxyl groups, oligosaccharide assembly through O-glycosylation requires simultaneous control of site-, stereo-, and chemoselectivities3,4. Chemists have traditionally relied on protecting group manipulations for this purpose,5-8 adding a lot of synthetic work. Here, we report a glycosylation platform that enables selective coupling between unprotected or minimally protected donor and acceptor sugars, producing 1,2-cis-O-glycosides in a catalyst-controlled, site-selective manner. Radical-based activation9 of allyl glycosyl sulfones forms glycosyl bromides. A designed aminoboronic acid catalysts bring this reactive intermediate close to an acceptor through a network of noncovalent hydrogen bonding and reversible covalent B-O bonding interactions, allowing precise glycosyl transfer. The site of glycosylation can be switched with different aminoboronic acid catalysts by affecting their interaction modes with substrates. The method accommodates a wide range of sugar types, amenable to preparing naturally occurring sugar chains and pentasaccharides containing 11 free hydroxyls. Experimental and computational studies provide insights into the origin of selectivity outcomes.

2.
Angew Chem Int Ed Engl ; : e202409332, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887822

RESUMEN

Described herein is a dirhodium(II)-catalyzed silylation of propargyl esters with hydrosilanes, using tertiary amines as axial ligands. By adopting this strategy, a range of versatile and useful allenylsilanes can be achieved with good yields. This reaction not only represents a SN2'-type silylation of the propargyl derivatives bearing a terminal alkyne moiety to synthesize allenylsilanes from simple hydrosilanes, but also represents a new application of dirhodium(II) complexes in catalytic transformation of carbon-carbon triple bond. The highly functionalized allenylsilanes that are produced can be transformed into a series of synthetically useful organic molecules. In this reaction, an intriguing ON-OFF effect of the amine ligand was observed. The reaction almost did not occur (OFF) without addition of Lewis base amine ligand. However, the reaction took place smoothly (ON) after addition of only catalytic amount of amine ligand. Detailed mechanistic studies and density functional theory (DFT) calculations indicate that the reactivity can be delicately improved by the use of tertiary amine. The fine-tuning effect of the tertiary amine is crucial in the formation of the Rh-Si species via a concerted metalation deprotonation (CMD) mechanism and facilitating ß-oxygen elimination.

3.
Org Lett ; 26(18): 3982-3986, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38690829

RESUMEN

Described herein is the development of a visible-light-induced photoredox 1,6-enyne reductive cyclization via selective reduction of a triple bond instead of an activated double bond. The selective 1,6-enyne radical cyclization/carbon═carbon double bond cleavage provided a straightforward route to structurally valuable α,ß-unsaturated γ-lactams. TEMPO-trap experiments, control experiments, and DFT calculations have offered evidence supporting the possible catalytic cycle.

4.
Molecules ; 29(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675603

RESUMEN

Due to boron's metalloid properties, aromatic boron reagents are prevalent synthetic intermediates. The direct borylation of aryl C-H bonds for producing aromatic boron compounds offers an appealing, one-step solution. Despite significant advances in this field, achieving regioselective aryl C-H bond borylation using simple and readily available starting materials still remains a challenge. In this work, we attempted to enhance the reactivity of the electron-donor-acceptor (EDA) complex by selecting different bases to replace the organic base (NEt3) used in our previous research. To our delight, when using NH4HCO3 as the base, we have achieved a mild visible-light-mediated aromatic C-H bond borylation reaction with exceptional regioselectivity (rr > 40:1 to single isomers). Compared with our previous borylation methodologies, this protocol provides a more efficient and broader scope for aryl C-H bond borylation through the use of N-Bromosuccinimide. The protocol's good functional-group tolerance and excellent regioselectivity enable the functionalization of a variety of biologically relevant compounds and novel cascade transformations. Mechanistic experiments and theoretical calculations conducted in this study have indicated that, for certain arenes, the aryl C-H bond borylation might proceed through a new reaction mechanism, which involves the formation of a novel transient EDA complex.

5.
Adv Mater ; : e2312429, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655823

RESUMEN

2D materials such as graphene, MoS2, and hexagonal BN are the most advanced solid lubricating materials with superior friction and anti-wear performance. However, as a typical surface phenomenon, the lubricating properties of 2D materials are largely dependent on the surrounding environment, such as temperature, stress, humidity, oxygen, and other environmental substances. Given the technical challenges in experiment for real-time and in situ detection of microscopic environment-material interaction, recent years have witnessed the acceleration of computational research on the lubrication behavior of 2D materials in realistic environments. This study reviews the up-to-date computational studies for the effect of environmental factors on the lubrication performance of 2D materials, summarizes the theoretical methods in lubrication from classical to quantum-mechanics ones, and emphasizes the importance of quantum method in revealing the lubrication mechanism at atomic and electronic level. An effective simulation method based on ab initio molecular dynamics is also proposed to try to provide more ways to accurately reveal the friction mechanisms and reliably guide the lubricating material design. On the basis of current development, future prospects, and challenges for the simulation and modeling in lubrication with realistic environment are outlined.

6.
J Org Chem ; 89(7): 5060-5068, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38525894

RESUMEN

Radical cyclization has been demonstrated to be an efficient method to access functionalized heterocycles from easily accessible raw materials. Described herein is the development of a photocatalytic proton-coupled electron transfer (PCET) strategy for the synthesis of isoquinoline-1,3-diones using readily prepared naphthalimide (NI)-based organic photocatalysts. The process features free metal-complex photocatalysts, acids, and mild reaction conditions. This mild radical cyclization protocol has a broad substrate scope and can be effectively applied to a variety of medicinally relevant substrates. Furthermore, control experiments were conducted to elucidate the mechanism of this visible light-induced methodology.

7.
J Cardiothorac Surg ; 19(1): 155, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532497

RESUMEN

BACKGROUND: To demonstrate the effectiveness and feasibility of robotic portal resection (RPR) for mediastinal tumour using a prospectively collected database. METHODS: Data from 73 consecutive patients with mediastinal tumours who underwent RPRs were prospectively collected from August 2018 to April 2023. All patients underwent chest and abdominal enhanced computed tomography (CT) and preoperative multidisciplinary team (MDT) discussion. The patients were stratified into two groups based on tumour size: Group A (tumour size < 4 cm) and Group B (tumour size ≥ 4 cm). General clinical characteristics, surgical procedures, and short outcomes were promptly recorded. RESULTS: All of the cases were scheduled for RPRs. One patient (1/73, 1.4%) was switched to a small utility incision approach because of extensive pleural adhesion. Two patients (2.8%) converted to sternotomy, however, no perioperative deaths occurred. Most of the tumours were located in the anterior mediastinum (51/73, 69.9%). Thymoma (27/73, 37.0%) and thymic cyst (16/73, 21.9%) were the most common diagnoses. The median diameter of tumours was 3.2 cm (IQR, 2.4-4.5 cm). The median total operative time was 61.0 min (IQR, 50.0-90.0 min). The median intraoperative blood loss was 20 mL (IQR, 5.0-30.0 ml), and only one patient (1.4%) experienced an intraoperative complication. The median length of hospital stay was 3 days (IQR, 2-4 days). Compared with Group A, the median total operative time and console time of Group B were significantly longer (P = 0.006 and P = 0.003, respectively). The volume of drainage on the first postoperative day was greater in group B than in group A (P = 0.013). CONCLUSION: RPR is a safe and effective technique for mediastinal tumour treatment, which can expand the application of minimally invasive surgery for the removal of complicated mediastinal tumours.


Asunto(s)
Neoplasias del Mediastino , Procedimientos Quirúrgicos Robotizados , Robótica , Timoma , Neoplasias del Timo , Humanos , Neoplasias del Mediastino/cirugía , Robótica/métodos , Neoplasias del Timo/cirugía , Timoma/cirugía , Resultado del Tratamiento , Estudios Retrospectivos
8.
RSC Adv ; 14(3): 1902-1908, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38192317

RESUMEN

We reported a novel electron-donor-acceptor (EDA) photocatalyst formed in situ from isoquinoline, a diboron reagent, and a weak base. To further optimize the efficiency of this photocatalyst, Density Functional Theory (DFT) calculations were conducted to investigate the substituent effects on the properties of vertical excitation energy and redox potential. Subsequently, we experimentally validated these effects using a broader range of substituents and varying substitution positions. Notably, the 4-NH2 EDA complex derived from 4-NH2-isoquinoline exhibits the highest photocatalytic efficiency, enabling feasible metal free borylation of aromatic C-H bond and detosylaion of Ts-anilines under green and super mild conditions. These experimental results demonstrate the effectiveness of our strategy for photocatalyst optimization.

9.
BMC Surg ; 23(1): 330, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891506

RESUMEN

BACKGROUND: Both video-assisted thoracoscopic surgery (VATS) thymectomy and robot-assisted thoracoscopic surgery (RATS) thymectomy have been suggested as technically sound approaches for early-stage thymic epithelial tumors. However, the choice of VATS or RATS thymectomy for large and advanced thymic epithelial tumors remains controversial. In this study, the perioperative outcomes of VATS and RATS thymectomy were compared in patients with large thymic epithelial tumors (size ≥5.0 cm). METHODS: A total of 113 patients with large thymic epithelial tumors who underwent minimally invasive surgery were included. Sixty-three patients underwent RATS, and 50 patients underwent VATS. Patient characteristics and perioperative variables were compared. RESULTS: Compared with the VATS group, the RATS group experienced a shorter operation time (median: 110 min vs.130 min; P < 0.001) and less blood loss (30.00 ml vs. 100.00 ml, P < 0.001). No patients in the RATS group needed conversion to open surgery, but in the VATS series, five patients required conversion to open procedures (0% vs. 14.29%, P = 0.054). The rate of concomitant resection in the RATS group was similar to that in the VATS group (11.43% vs. 5.71%; P = 0.673). There was no significant difference between the two groups in the duration of chest tube (P = 0.587), postoperative complications (P = 1.000), and the duration of postoperative hospital stay (P = 0.141). CONCLUSION: For large thymic epithelial tumors, RATS thymectomy can be performed safely and effectively in a radical fashion. Due to the advanced optics and precise instrument control, concomitant resections can be easily achieved in larger thymic epithelial tumors using the robotic approach.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Robótica , Neoplasias del Timo , Humanos , Timectomía/métodos , Cirugía Torácica Asistida por Video/métodos , Estudios Retrospectivos , Neoplasias del Timo/cirugía , Neoplasias del Timo/patología , Neoplasias Glandulares y Epiteliales/cirugía
10.
Chem Rev ; 123(16): 9940-9981, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37561162

RESUMEN

A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Polímeros
11.
J Agric Food Chem ; 71(30): 11692-11703, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37483134

RESUMEN

Most GH11 family endo-ß-1,4-xylanases contain a propeptide region linked to the N-terminal region. The mechanistic basis of this region harboring key regulation information for enzyme function, however, remains poorly understood. We reported an investigation on the allosteric regulation mechanism of the propeptide based on biochemical characterization, molecular dynamics simulations, and evolutionary analysis. We discovered that the mutant of truncated propeptide shows a remarkably increased thermal stability (melting temperature increased by 11.5 °C) and catalytic efficiency (1.7-fold kcat/Km value of wild type). Molecular dynamics simulations reveal that long-range fluctuations in the propeptide lead to a conformational perturbation in the catalytic pocket and the thumb region. The probability of sampling the active conformation during the glycosylation step is reduced (i.e., catalytic efficiency). In-depth sequence analysis indicates that the propeptide has a strong plasticity and degeneration trend, and propeptide truncation experiments of the homologous enzyme XynB validated the feasibility of the truncation strategy. This work reveals the role of GH11 family propeptides in functional regulation and provides a straightforward and practical method to increase the robustness of GH11 family xylanases.


Asunto(s)
Endo-1,4-beta Xilanasas , Simulación de Dinámica Molecular , Dominio Catalítico , Regulación Alostérica , Temperatura , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas
12.
Thorac Cancer ; 14(16): 1512-1519, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37128686

RESUMEN

BACKGROUND: To explore whether robotic lobectomy (RL) is superior to video-assisted lobectomy (VAL) in terms of short-term outcomes in patients with pulmonary neoplasms. METHODS: From January 30, 2019 to February 28, 2022, a series of consecutive minimally invasive lobectomies were performed for patients with pulmonary neoplasms. Perioperative outcomes such as operation time, blood loss, dissected lymph nodes (LNs), surgical complications, postoperative pain control, length of postoperative stay in hospital, and total cost of hospitalization were compared. RESULTS: A total of 336 cases including 173 RLs and 163 VALs were enrolled. Baseline characteristics were comparable between groups. RLs were associated with shorter operation time (median [interquadrant range, IQR], 107 min [90-130] vs. 120 min [100-149], p < 0.001), less blood loss (median [IQR], 50 mL [30-60] vs. 50 mL [50-80], p = 0.02), and lower blood transfusion rate (3.5% vs. 9.8%, p = 0.02) compared with VALs. More LNs were harvested by the robotic approach (median [IQR], 29 [20-41] vs. 22 [15-45], p = 0.04). The incidences of conversion, major postoperative complications, extra analgesic usage, and postoperative length of stay were all comparable between the RL and VAL groups. As predicted, the total cost of hospitalization was greater in the RL group (median [IQR], $16728.35 [15682.16-17872.15] vs. $10713.47 [9662.13-11742.15], p < 0.001). CONCLUSION: RL improved surgical efficacy with shortened operative time, less blood loss, and more thorough LN dissection compared with VAL, compromised by higher cost.


Asunto(s)
Neoplasias Pulmonares , Procedimientos Quirúrgicos Robotizados , Humanos , Resultado del Tratamiento , Estudios Retrospectivos , Neumonectomía/efectos adversos , Neoplasias Pulmonares/patología , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Tiempo de Internación , Cirugía Torácica Asistida por Video/efectos adversos
13.
Angew Chem Int Ed Engl ; 62(33): e202303075, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37202371

RESUMEN

A highly enantioselective catalytic system for exo-Diels-Alder reactions was developed based on the newly discovered bispyrrolidine diboronates (BPDB). Activated by various Lewis or Brønsted acids, BPDB can catalyze highly stereoselective asymmetric exo-Diels-Alder reactions of monocarbonyl-based dienophiles. When 1,2-dicarbonyl-based dienophiles are used, the catalyst can sterically distinguish between the two binding sites, which leads to highly regioselective asymmetric Diels-Alder reactions. BPDB can be prepared as crystalline solids on a large scale and are stable under ambient condition. Single-crystal X-ray analysis of the structure for acid-activated BPDB indicated that its activation involves cleavage of a labile B←N bond.

14.
Chem Asian J ; 18(7): e202300063, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36806582

RESUMEN

The Diels-Alder reaction is believed to be a key step in the biosynthesis of prenylated indole alkaloids containing a bicycle[2.2.2]diazaoctane moiety. Many chemical syntheses of bicyclic structures by Diels-Alder reactions have been reported, but the reaction mechanism remains underexplored. We have carried out DFT calculations on both acid- and base-promoted Diels-Alder reactions in these syntheses and reveal that the reactions occur through an inverse-electron demand mechanism. We hope that the new mechanism is helpful for the mechanistic understanding of the biosynthesis of this class of important natural products.

15.
Ann Surg Oncol ; 30(5): 2757-2764, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36774436

RESUMEN

BACKGROUND: Our study aimed to compare the short-term outcomes between robot-assisted segmentectomy (RAS) and video-assisted segmentectomy (VAS) for small pulmonary nodules. METHODS: The study included of 299 segmentectomies (132 RAS and 167 VAS procedures) for small pulmonary nodules between June 2018 and November 2021. The patients were divided into two groups: the RAS group and the VAS group. Propensity score-matching (PSM) analysis was performed to minimize bias. A logistic regression model was performed to identify the independent risk factors associated with complications. RESULTS: Before PSM, the following clinical variables were not balanced: age (P = 0.004), tumor size (P < 0.001), forced expiratory volume for 1 s (FEV1), and FEV1 percentage (P < 0.001). The patients with RAS had a shorter operative time (P = 0.014), less blood loss, a shorter postoperative hospital stay, less use of strong opioids, less drainage on postoperative day 1, and less postoperative total drainage, but more cost (all P < 0.001). Conversion to open surgery was performed for two patients in the VAS group but none in the RAS group. After PSM, 53 pairs were successfully matched. The data again suggested that the patients with RAS had less blood loss, a shorter postoperative hospital stay, and less use of strong opioids, but more cost (all P < 0.001). The operation time also was shorter in the RAS group, with a borderline statistically significant P value (0.053). CONCLUSIONS: In our study, RAS had better short-term outcomes than VAS, indicating a safer and more efficient technique than VAS.


Asunto(s)
Nódulos Pulmonares Múltiples , Robótica , Humanos , Neumonectomía/métodos , Puntaje de Propensión , Mastectomía Segmentaria , Cirugía Torácica Asistida por Video/efectos adversos , Estudios Retrospectivos
17.
J Am Chem Soc ; 144(47): 21800-21807, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36383694

RESUMEN

Palladium-catalyzed carbonylation reactions are efficient methods for synthesizing valuable molecules. However, realizing a carbonylation with excellent yield and chemo-, regio-, and enantioselectivities by classical low-valent palladium catalysis is highly challenging. Herein, we describe an enantioselective carbonylation reaction using a high-valent palladium catalysis strategy and employing a chiral sulfoxide phosphine (SOP) ligand. This double aminocarbonylation reaction begins with the formation of a carbamoylpalladium(II) species, which undergoes enantioselective oxidative addition with a cyclic diaryliodonium salt to generate a palladium(IV) intermediate, followed by a second CO insertion and reductive elimination. The mechanism has been illustrated with experimental and computational studies.


Asunto(s)
Paladio , Sulfóxidos , Estereoisomerismo , Catálisis , Ligandos
18.
J Org Chem ; 87(16): 10958-10966, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35901268

RESUMEN

Controlling the number of C-H bond activation is a long-standing challenge in organic synthesis. Recently, Yu's group demonstrated that in Pd-catalyzed alanine's arylation, pyridine-type ligands favor a mono-C-H bond activation, while quinoline-type ligands favor a di-C-H bond activation. To disclose the underlying principles, a theoretical study (density functional theory (DFT)) has been carried out. Our study indicates that a mono-ligand model, which is generally adopted in the community, does not reproduce the experimentally observed mono-/di-selectivity, while a bi-ligand model can rationalize the experimental observations well, including the observed diastereoselectivity in diarylation. The electron-rich pyridine-type ligands with less steric congestion can promote the C-H bond activation reaction of alanine derivatives. The quinoline-type ligands have a better π back-donation interaction with the metal, which makes a more active C-H bond activation than the pyridine-type ligands for this reaction. This bi-ligand model, which is a necessity, allows the understanding and future design of a dual ligand effect in C-H bond activation.


Asunto(s)
Paladio , Quinolinas , Alanina , Catálisis , Ligandos , Paladio/química , Piridinas
19.
Chem Sci ; 13(17): 4909-4914, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35655877

RESUMEN

Organoboron compounds are very important building blocks which can be applied in medicinal, biological and industrial fields. However, direct borylation in a metal free manner has been very rarely reported. Herein, we described the successful direct borylation of haloarenes under mild, operationally simple, catalyst-free conditions, promoted by irradiation with visible light. Mechanistic experiments and computational investigations indicate the formation of an excited donor-acceptor complex with a -3.12 V reduction potential, which is a highly active reductant and can facilitate single-electron-transfer (SET) with aryl halides to produce aryl radical intermediates. A two-step one-pot method was developed for site selective aromatic C-H bond borylation. The protocol's good functional group tolerance enables the functionalization of a variety of biologically relevant compounds, representing a new application of aryl radicals merged with photochemistry.

20.
Org Lett ; 24(17): 3113-3117, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35475629

RESUMEN

Described herein is the development of a metal-free iodide-catalyzed radical reductive cyclization of 1,6-enynes. A strategy involving in situ iodination/radical cyclization/silyl radical-mediated halogen atom transfer/hydrogen atom transfer for the synthesis of functionalized pyrrolidines has been proposed. Using this halogen-atom abstraction protocol, 1,6-enynes with various vinyl halides including inert fluorides, chlorides, and reactive bromides could be transformed into substituted pyrroles via a multistep radical isomerization process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA