Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.226
Filtrar
Más filtros

Intervalo de año de publicación
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767492

RESUMEN

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
Chemosphere ; 364: 143136, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168388

RESUMEN

The present study employed powdered activated coke (PAC) for the adsorptive removal of refractory COD from the bio-treated paper wastewater (BTPW). The adsorption reached equilibrium after 3 h, resulting in a decrease in the COD concentration from 98.9 mg L-1 in BTPW to 42.6 mg L-1 when utilizing a PAC dosage of 5 g L-1. The dominant fractions of dissolved organic matter in BTPW were hydrophilic acids (HIA), hydrophilic neutrals (HIN), and hydrophobic acids (HOA), accounting for 48.8%, 34.2%, and 17.0% of the total dissolved organic carbon, respectively. Three fractions were all predominantly composed of humic/fulvic acid-like substances, while the HOA fraction exhibited highest susceptibility to adsorption by PAC, followed by the HIA and HIN fractions. FT-ICR MS data revealed PAC preferentially adsorbed the unsaturated and oxygen-rich substances containing more carboxyl groups. Additionally, the spent PAC was regenerated through ozonation and subsequently utilized in the adsorption cycles. The regeneration was successfully conducted under an ozone concentration of 1 mg L-1 for a duration of 10 min, and the regeneration efficiency remained about 87.0% even after undergoing five-cycle of adsorption-regeneration. The findings of this study demonstrate that PAC adsorption is a viable and efficacious treatment technology for efficiently removing refractory COD from BTPW.

3.
Diabetes Metab Syndr Obes ; 17: 3029-3041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166154

RESUMEN

Background and Aim: Obesity is association with elevated risks of erosive esophagitis (EE), and metabolic abnormalities play crucial roles in its development. The aim of the study was to assess the association between metabolic obesity phenotypes and the risk of EE. Methods: This retrospective study enrolled 11,599 subjects who had undergone upper gastrointestinal endoscopy at the First Affiliated Hospital of Dalian Medical University from January 1, 2008, to December 31, 2023. The enrolled individuals were grouped into four cohorts based on their metabolic health and obesity profiles, namely, metabolically healthy non-obesity (MHNO; n=2134, 18.4%), metabolically healthy obesity (MHO; n=1736, 15.0%), metabolically unhealthy non-obesity (MUNO; n=4290, 37.0%), and metabolically unhealthy obesity (MUO; n=3439, 29.6%). The relationships of the different phenotypes of metabolic obesity with the risks of developing EE in the different sexes and age groups were investigated by multivariate logistic regression analysis. Results: The MUNO, MHO, and MUO cohorts exhibited elevated risks of developing EE than the MHNO cohort. The confounding factors were adjusted for, and the findings revealed that the MUO cohort exhibited the greatest risk of EE, with odds ratios (ORs) of 5.473 (95% CI: 4.181-7.165) and 7.566 (95% CI: 5.718-10.010) for males and females, respectively. The frequency of occurrence of EE increased following an increase in proportion of metabolic risk factors. Subgroup analyses showed that the individuals under and over 60 years of age in the MHO, MUNO, and MUO cohorts exhibited elevated risks of developing EE. Further analysis suggested that obesity has a stronger influence on the risks of developing EE compared to metabolic disorders. Conclusion: Metabolic disorders and obesity are both related with an elevated risk of EE, in which obesity has a potentially stronger influence. Clinical interventions should target both obesity and metabolic disorders to reduce EE risk.

4.
Biomacromolecules ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167691

RESUMEN

Heteropolypeptides bearing two or more functional side chains are promising polymeric materials for various biomedical applications. However, conventional preparation of heteropolypeptides relies on the synthesis and purification of each N-carboxyanhydride (NCA) monomer in a separate manner, which substantially increases the time and cost. Herein, we report the facile preparation of heteropolypeptides with up to 86% yield within several hours, which are obtained from a mixture of crude NCA monomers. The combination of n-hexane precipitation and biphasic segregation effectively removed >90% impurities from crude NCA mixtures, allowing for the successful polymerization process. Various heteropolypeptides with monomodal distribution and narrow dispersity were efficiently prepared, whose compositions were predetermined by the feeding ratios of amino acids. We believe that this work significantly simplifies the preparation of various heteropolypeptides, boosting the downstream studies of these promising materials.

5.
BMC Med Imaging ; 24(1): 216, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148028

RESUMEN

BACKGROUND: Focal cortical dysplasia (FCD) is the most common epileptogenic developmental malformation. The diagnosis of FCD is challenging. We generated a radiomics nomogram based on multiparametric magnetic resonance imaging (MRI) to diagnose FCD and identify laterality early. METHODS: Forty-three patients treated between July 2017 and May 2022 with histopathologically confirmed FCD were retrospectively enrolled. The contralateral unaffected hemispheres were included as the control group. Therefore, 86 ROIs were finally included. Using January 2021 as the time cutoff, those admitted after January 2021 were included in the hold-out set (n = 20). The remaining patients were separated randomly (8:2 ratio) into training (n = 55) and validation (n = 11) sets. All preoperative and postoperative MR images, including T1-weighted (T1w), T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR), and combined (T1w + T2w + FLAIR) images, were included. The least absolute shrinkage and selection operator (LASSO) was used to select features. Multivariable logistic regression analysis was used to develop the diagnosis model. The performance of the radiomic nomogram was evaluated with an area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration and clinical utility. RESULTS: The model-based radiomics features that were selected from combined sequences (T1w + T2w + FLAIR) had the highest performances in all models and showed better diagnostic performance than inexperienced radiologists in the training (AUCs: 0.847 VS. 0.664, p = 0.008), validation (AUC: 0.857 VS. 0.521, p = 0.155), and hold-out sets (AUCs: 0.828 VS. 0.571, p = 0.080). The positive values of NRI (0.402, 0.607, 0.424) and IDI (0.158, 0.264, 0.264) in the three sets indicated that the diagnostic performance of Model-Combined improved significantly. The radiomics nomogram fit well in calibration curves (p > 0.05), and decision curve analysis further confirmed the clinical usefulness of the nomogram. Additionally, the contrast (the radiomics feature) of the FCD lesions not only played a crucial role in the classifier but also had a significant correlation (r = -0.319, p < 0.05) with the duration of FCD. CONCLUSION: The radiomics nomogram generated by logistic regression model-based multiparametric MRI represents an important advancement in FCD diagnosis and treatment.


Asunto(s)
Displasia Cortical Focal , Imágenes de Resonancia Magnética Multiparamétrica , Nomogramas , Radiómica , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Adulto Joven , Displasia Cortical Focal/diagnóstico por imagen , Lateralidad Funcional , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Estudios Retrospectivos
6.
iScience ; 27(8): 110480, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39156651

RESUMEN

Fish cells, such as grass carp (Ctenopharyngodon idella) kidney (CIK) cells, are harder to transfect than mammalian cells. There is a need for an efficient gene delivery system for fish cells. Here, we used CIK cell line as a model to develop a strategy to enhance RNA and plasmid DNA transfection efficiency using a nanocarrier generated from α-lactalbumin (α-NC). α-NC absorbed nucleic acid cargo efficiently and exhibited low cytotoxicity. Plasmid transfection was more efficient with α-NC than with liposomal transfection reagents. We used α-NC to co-transfect Tol2 transposase mRNA and a plasmid containing Cas9 and GFP, generating a stable transgenic CIK cell line. Genome and RNA sequencing revealed that the Cas9 and GFP fragments were successfully inserted into the genome of CIK cells and efficiently transcribed. In this study, we established an efficient transfection system for fish cells using α-NC, simplifying the process of generating stable transgenic fish cell lines.

7.
Int J Ophthalmol ; 17(8): 1501-1509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156783

RESUMEN

AIM: To analyze the changes in scientific output relating to Leber congenital amaurosis (LCA) and forecast the study trends in this field. METHODS: All of the publications in the field of LCA from 2002 to 2022 were collected from Web of Science (WOS) database. We analyzed the quantity (number of publications), quality (citation and H-index) and development trends (relative research interest, RRI) of published LCA research over the last two decades. Moreover, VOSviewer software was applied to define the co-occurrence network of keywords in this field. RESULTS: A total of 2158 publications were ultimately examined. We found that the focus on LCA kept rising and peaked in 2015 and 2018, which is consistent with the development trend of gene therapy. The USA has contributed most to this field with 1162 publications, 56 674 citations and the highest H-index value (116). The keywords analysis was divided into five clusters to show the hotspots in the field of LCA, namely mechanism-related, genotype-related, local phenotype-related, system phenotype-related, and therapy-related. We also identified gene therapy and anti-retinal degeneration therapy as a major focus in recent years. CONCLUSION: Our study illustrates historical research process and future development trends in LCA field. This may help to guide the orientation for further clinical diagnosis, treatment and scientific research.

8.
J Immunol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158281

RESUMEN

Invariant NKT (iNKT) cells are a group of innate-like T cells that plays important roles in immune homeostasis and activation. We found that iNKT cells, compared with CD4+ T cells, have significantly higher levels of lipid peroxidation in both mice and humans. Proteomic analysis also demonstrated that iNKT cells express higher levels of phospholipid hydroperoxidase glutathione peroxidase 4 (Gpx4), a major antioxidant enzyme that reduces lipid peroxidation and prevents ferroptosis. T cell-specific deletion of Gpx4 reduces iNKT cell population, most prominently the IFN-γ-producing NKT1 subset. RNA-sequencing analysis revealed that IFN-γ signaling, cell cycle regulation, and mitochondrial function are perturbed by Gpx4 deletion in iNKT cells. Consistently, we detected impaired cytokine production, elevated cell proliferation and cell death, and accumulation of lipid peroxides and mitochondrial reactive oxygen species in Gpx4 knockout iNKT cells. Ferroptosis inhibitors, iron chelators, vitamin E, and vitamin K2 can prevent ferroptosis induced by Gpx4 deficiency in iNKT cells and ameliorate the impaired function of iNKT cells due to Gpx4 inhibition. Last, vitamin E rescues iNKT cell population in Gpx4 knockout mice. Altogether, our findings reveal the critical role of Gpx4 in regulating iNKT cell homeostasis and function, through controlling lipid peroxidation and ferroptosis.

9.
Shock ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39158541

RESUMEN

BACKGROUND: Sepsis, a complex and life-threatening disease, poses a significant global burden affecting over 48 million individuals. Recently, it has been reported that programmed death-ligand 1 (PD-L1) expressed on neutrophils is involved in both inflammatory organ dysfunction and immunoparalysis in sepsis. However, there is a dearth of strategies to specifically target PD-L1 in neutrophils in vivo. METHODS: We successfully developed two lipid nanoparticles (LNPs) specifically targeting neutrophils by delivering PD-L1 siRNA via neutrophil-specific antibodies and polypeptides. In vivo and in vitro experiments were performed to detect lipid nanoparticles into neutrophils. A mouse cecal ligation and puncture (CLP) model was used to detect neutrophil migration, neutrophil extracellular traps (NETs) level, and organ damage. RESULT: The PD-L1 siRNA-loaded LNPs that target neutrophils suppressed inflammation, reduced the release of NETs, and inhibited T-lymphocyte apoptosis. This approach could help maintain homeostasis of both the immune and inflammatory responses during sepsis. Furthermore, the PD-L1 siRNA-loaded LNPs targeting neutrophils have the potential to ameliorate the multi-organ damage and lethality resulting from CLP. CONCLUSIONS: Taken together, our data identify a previously unknown drug delivery strategy targeting neutrophils, which represents a novel, safe, and effective approach to sepsis therapy.

10.
J Comput Biol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109562

RESUMEN

Small molecules (SMs) play a pivotal role in regulating microRNAs (miRNAs). Existing prediction methods for associations between SM-miRNA have overlooked crucial aspects: the incorporation of local topological features between nodes, which represent either SMs or miRNAs, and the effective fusion of node features with topological features. This study introduces a novel approach, termed high-order topological features for SM-miRNA association prediction (HTFSMMA), which specifically addresses these limitations. Initially, an association graph is formed by integrating SM-miRNA association data, SM similarity, and miRNA similarity. Subsequently, we focus on the local information of links and propose target neighborhood graph convolutional network for extracting local topological features. Then, HTFSMMA employs graph attention networks to amalgamate these local features, thereby establishing a platform for the acquisition of high-order features through random walks. Finally, the extracted features are integrated into the multilayer perceptron to derive the association prediction scores. To demonstrate the performance of HTFSMMA, we conducted comprehensive evaluations including five-fold cross-validation, leave-one-out cross-validation (LOOCV), SM-fixed local LOOCV, and miRNA-fixed local LOOCV. The area under receiver operating characteristic curve values were 0.9958 ± 0.0024 (0.8722 ± 0.0021), 0.9986 (0.9504), 0.9974 (0.9111), and 0.9977 (0.9074), respectively. Our findings demonstrate the superior performance of HTFSMMA over existing approaches. In addition, three case studies and the DeLong test have confirmed the effectiveness of the proposed method. These results collectively underscore the significance of HTFSMMA in facilitating the inference of associations between SMs and miRNAs.

11.
Transl Neurodegener ; 13(1): 39, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095921

RESUMEN

BACKGROUND: Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified. METHODS: The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test. RESULTS: The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits. CONCLUSIONS: DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.


Asunto(s)
Enfermedad de Alzheimer , Endodesoxirribonucleasas , Neuronas , Proteínas tau , Animales , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilación , Ratones , Neuronas/metabolismo , Neuronas/patología , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/patología , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/metabolismo , Ratones Transgénicos , ADN/genética , Masculino , Femenino , Encéfalo/metabolismo , Encéfalo/patología , Ratones Endogámicos C57BL
12.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126025

RESUMEN

Breast cancer is a heterogeneous disease that arises as a multi-stage process involving multiple cell types. Patients diagnosed with the same clinical stage and pathological classification may have different prognoses and therapeutic responses due to alterations in molecular genetics. As an essential marker for the molecular subtyping of breast cancer, long non-coding RNAs (lncRNAs) play a crucial role in gene expression regulation, cell differentiation, and the maintenance of genomic stability. Here, we developed a modular framework for lncRNA identification and applied it to a breast cancer cohort to identify novel lncRNAs not previously annotated. To investigate the potential biological function, regulatory mechanisms, and clinical relevance of the novel lncRNAs, we elucidated the genomic and chromatin features of these lncRNAs, along with the associated protein-coding genes and putative enhancers involved in the breast cancer regulatory networks. Furthermore, we uncovered that the expression patterns of novel and annotated lncRNAs identified in breast cancer were related to the hormone response in the PAM50 subtyping criterion, as well as the immune response and progression states of breast cancer across different immune cells and immune checkpoint genes. Collectively, the comprehensive identification and functional analysis of lncRNAs revealed that these lncRNAs play an essential role in breast cancer by altering gene expression and participating in the regulatory networks, contributing to a better insight into breast cancer heterogeneity and potential avenues for therapeutic intervention.


Asunto(s)
Neoplasias de la Mama , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Transcriptoma , Biomarcadores de Tumor/genética , Pronóstico
13.
Tissue Cell ; 90: 102521, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128192

RESUMEN

Larvae are the most important feeding and developmental stage in the life cycle of insects. Correspondingly, the larval midguts, as the primary digestive organs, undergo diverse specialization among insect lineages. Larvae of Scarabaeoidae, commomly known as white grubs, exhibit diversity on feeding habits at the familial or subfamilial level. However, the ultrastructure of larval midguts is not yet satisfactorily understood. In this study, the larval midguts of Trypoxylus dichotomus and Anomala corpulenta were compared using light and transmission electron microscopy for the first time, to uncover the ultrastructural differences between the midguts of saprophagous and phytophagous white grubs. The larval midguts of both species are tubular with three circles of the gastric caeca, and share morphological similarities in midgut epithelial cells, layers of basal lamina, and the digestive and regenerative cells. However, the midguts of the two species differ significantly in the shape of the gastric caeca and exhibit slightly differences in muscle structure. The morphology of larval midgut is related to the feeding habits.

14.
Environ Geochem Health ; 46(10): 393, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180598

RESUMEN

The Ngari region has many important rivers and is critical to water resource security and water resource continuity in China and even in adjoining Asian countries. However, the spatial distribution and monthly variation in local water quality have been poorly understood until recently. In this study, the spatial-temporal variations of 12 water quality parameters, including pH, dissolved oxygen (DO), permanganate index (IMn), chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), ammonia nitrogen (NNH3), total nitrogen (Ntotal), total phosphorus (Ptotal), copper (Cu), fluoride (F), arsenic (As) and cadmium (Cd), were determined from samples collected monthly at 22 water cross-sectional sites in the Ngari region in 2020. The surface water pollution in the southern Ngari region was the most serious, and the water pollution level in winter was higher than that in the other seasons. As (0.0781 ~ 0.6154 mg/L) and F (1.05 ~ 4.64 mg/L) were the main exceedance factors derived from the recharge of high arsenic and fluoride geothermal water and weathering of As and F-bearing minerals. The hazard quotient and carcinogenic risk for As and F at the five contaminated sampling sites indicated potential health risks and even carcinogenicity to local populations. The hydrochemistry types of the lakes and rivers in the Ngari region were mainly chloride water and carbonate water. The results from this study can provide a scientific basis for the prevention and control of surface water pollution in the Ngari region and contribute to subsequent research on the ecology of water bodies.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Ríos/química , Análisis Espacio-Temporal , Fluoruros/análisis , Arsénico/análisis , Estaciones del Año , Calidad del Agua , Medición de Riesgo , Nitrógeno/análisis , Fósforo/análisis
15.
Front Plant Sci ; 15: 1425759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119497

RESUMEN

Introduction: Currently, the development of new antiviral drugs against COVID-19 remains of significant importance. In traditional Chinese medicine, the herb Euphorbia fischeriana Steud is often used for antiviral treatment, yet its therapeutic effect against the COVID-19 has been scarcely studied. Therefore, this study focuses on the roots of E. fischeriana Steud, exploring its chemical composition, antiviral activity against COVID-19, and the underlying basis of its antiviral activity. Methods: Isolation and purification of phytochemicals from E. fischeriana Steud. The elucidation of their configurations was achieved through a comprehensive suite of 1D and 2D NMR spectroscopic analyses as well as X-ray diffraction. Performed cytopathic effect assays of SARS-CoV-2 using Vero E6 cells. Used molecular docking to screen for small molecule ligands with binding to SARS-CoV-2 RdRp. Microscale thermophoresis (MST) was used to determine the dissociation constant Kd. Results: Ultimately, nine new ent-atisane-type diterpenoid compounds were isolated from E. fischeriana Steud, named Eupfisenoids A-I (compounds 1-9). The compound of 1 was established as a C-19-degraded ent-atisane-type diterpenoid. During the evaluation of these compounds for their antiviral activity against COVID-19, compound 1 exhibited significant antiviral activity. Furthermore, with the aid of computer virtual screening and microscale thermophoresis (MST) technology, it was found that this compound could directly bind to the RNA-dependent RNA polymerase (RdRp, NSP12) of the COVID-19, a key enzyme in virus replication. This suggests that the compound inhibits virus replication by targeting RdRp. Discussion: Through this research, not only has our understanding of the antiviral components and material basis of E. fischeriana Steud been enriched, but also the potential of atisane-type diterpenoid compounds as antiviral agents against COVID-19 has been discovered. The findings mentioned above will provide valuable insights for the development of drugs against COVID-19.

16.
Alzheimers Dement ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115897

RESUMEN

INTRODUCTION: Clonal hematopoiesis of indeterminate potential (CHIP) and dementia disproportionately burden patients with chronic kidney disease (CKD). The association between CHIP and cognitive impairment in CKD patients is unknown. METHODS: We conducted time-to-event analyses in up to 1452 older adults with CKD from the Chronic Renal Insufficiency Cohort who underwent CHIP gene sequencing. Cognition was assessed using four validated tests in up to 6 years mean follow-up time. Incident cognitive impairment was defined as a test score one standard deviation below the baseline mean. RESULTS: Compared to non-carriers, CHIP carriers were markedly less likely to experience impairment in attention (adjusted hazard ratio [HR] [95% confidence interval {CI}] = 0.44 [0.26, 0.76], p = 0.003) and executive function (adjusted HR [95% CI] = 0.60 [0.37, 0.97], p = 0.04). There were no significant associations between CHIP and impairment in global cognition or verbal memory. DISCUSSION: CHIP was associated with lower risks of impairment in attention and executive function among CKD patients. HIGHLIGHTS: Our study is the first to examine the role of CHIP in cognitive decline in CKD. CHIP markedly decreased the risk of impairment in attention and executive function. CHIP was not associated with impairment in global cognition or verbal memory.

17.
Clin Nucl Med ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39192509

RESUMEN

ABSTRACT: A 54-year-old woman with a history of end-stage renal disease was found to have infiltrative cardiomyopathy by echocardiography. 99mTc-pyrophosphate (99mTc-PYP) scintigraphy was positive with a remarkable myocardial uptake. Gene test found a mutation of AGXT, confirming a final diagnosis of primary hyperoxaluria. Radiotracer uptake was due to high myocardial oxalate deposition. This case illustrates false positivity of the 99mTc-PYP scan caused by hyperoxaluria-associated cardiomyopathy, which raises awareness for other conditions apart from amyloid cardiomyopathy.

18.
Front Pharmacol ; 15: 1437738, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193349

RESUMEN

Introduction: Elevated glucagon levels are a characteristic feature of type 2 diabetes. This abnormal increase in glucagon can lead to an accelerated rate of gluconeogenesis. Glucagon also stimulates hepatic metabolism of amino acids, particularly promoting the formation of urea. The specific role of carbamoyl phosphate synthetase 1 (CPS1), a rate-limiting enzyme in the urea cycle, in the development versus the persistence of glucagon-induced hyperglycemia has not been previously established. Methods: The study employed both in vivo and in vitro approaches to assess the impact of CPS1 modulation on glucagon response. CPS1 was knockdown or overexpression to evaluate its influence on hepatic gluconeogenesis. In addition, an in-silico strategy was employed to identify a potential CPS1 inhibitor. Results: Knockdown of CPS1 significantly reduced the glucagon response both in vivo and in vitro. Conversely, overexpression of CPS1 resulted in an overactive hepatic gluconeogenic response. Mechanistically, CPS1 induced the release of calcium ions from the endoplasmic reticulum, which in turn triggered the phosphorylation of CaMKII. The activation of CaMKII then facilitated the dephosphorylation and nuclear translocation of FOXO1, culminating in the enhancement of hepatic gluconeogenesis. Furthermore, cynarin, a natural CPS1 inhibitor derived from the artichoke plant, had the capacity to attenuate the hepatic glucagon response in a CPS1-dependent manner. Discussion: CPS1 played a pivotal role in mediating glucagon-induced hepatic gluconeogenesis. The discovery of cynarin as a natural inhibitor of CPS1 suggested its potential as a therapeutic agent for diabetes treatment.

20.
Inorg Chem ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163558

RESUMEN

Large metal-phosphonate clusters typically exhibit regular polyhedral, wheel-shaped, spherical, or capsule-shaped morphologies more effectively than high-aspect ratio topologies. A system of elongated lanthanide core topologies has now been synthesized by the reaction of lanthanide 1-naphthylmethylphosphonates and four differently terminated pyrazinyl hydrazones. Four new rod-shaped dysprosium phosphonate clusters, [Dy6(O3PC11H9)4(L1)4(µ4-O)(DMF)4]·2DMF·3MeCN·3H2O (1), [Dy8(O3PC11H9)4(L2)4(µ3-O)4(CO2)4(H2O)4]·6DMF·4MeCN·3H2O (2), [Dy12Na(O3PC11H9)6(L3)6(µ3-O)2(pyr)6]·DMF·2MeCN·H2O (3), and [Dy14(O3PC11H9)12(L4)8(µ3-O)2(DMF)4(MeOH)2(H2O)4]·5DMF·2MeCN·H2O (4), were obtained. Four single-pyrazinyl hydrazones function as pentadentate bis-chelate terminal co-ligands, coordinating the periphery of dysprosium phosphonate rods. A sodium ion serves as a cation template for constructing heterobimetallic 3 by occupying the void, demonstrating the ability to reliably control cluster length by modifying the hydrazone co-ligand structure and cation template. Additionally, it was observed that the elongation of the rods has a significant directional impact on the magnetic relaxation behavior, transitioning from a one-step process in 1 to a three-step process in 2, a two-step process in 3, and finally a two-step process in 4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA