Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(43): 23313-23319, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34431600

RESUMEN

Introducing BN units into polycyclic aromatic hydrocarbons expands the chemical space of conjugated materials with novel properties. However, it is challenging to achieve accurate synthesis of BN-PAHs with specific BN positions and orientations. Here, three new parent B2 N2 -perylenes with different BN orientations are synthesized with BN-naphthalene as the building block, providing systematic insight into the effects of BN incorporation with different orientations on the structure, (anti)aromaticity, crystal packing and photophysical properties. The intermolecular dipole-dipole interaction shortens the π-π stacking distance. The crystal structure, (anti)aromaticity, and photophysical properties vary with the change of BN orientation. The revealed BN doping effects may provide a guideline for the synthesis of BN-PAHs with specific stacking structures, and the synthetic strategy employed here can be extended toward the synthesis of larger BN-embedded PAHs with adjustable BN patterns.

2.
J Org Chem ; 85(1): 241-247, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31755261

RESUMEN

The Diels-Alder reaction strategy that can rapidly extend the conjugated backbone was applied to facilely synthesize fold-line, coplanar BN-embedded polycyclic aromatic hydrocarbons from simple small BN compounds. The molecular structures and packing modes of these BN-embedded acenes were confirmed by single-crystal X-ray diffraction. Their electronic and photophysical properties were studied by using UV-vis, fluorescence spectroscopy, electrochemical cyclic voltammetry, and density functional theory calculations. These results demonstrate the efficiency and feasibility of this synthetic strategy.

3.
Angew Chem Int Ed Engl ; 58(31): 10708-10712, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31125146

RESUMEN

Considerable efforts have been devoted to achieving stable acene derivatives for electronic applications; however, the instability is still a major issue for such derivatives. To achieve higher stability with minimum structural change, CC units in the acenes were replaced with isoelectronic BN units to produce a novel BN-embedded tetrabenzopentacene (BNTBP). BNTBP, with a planar structure, is highly stable to air, moisture, light, and heat. Compared with its carbon analogue tetrabenzopentacene (TBP), BN embedment lowered the highest occupied molecular orbital (HOMO) energy level of BNTBP, changed the orbital distribution, and decreased the HOMO orbital coefficients at the central carbon atoms, which stabilize BNTBP molecules upon exposure to oxygen and sunlight. The single-crystal microribbons of BNTBP exhibited good performance in field-effect transistors (FETs). The high stability and good mobility of BNTBP indicates that BN incorporation is an effective approach to afford stable large-sized acenes with desired properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA