Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 16973, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451917

RESUMEN

The aim was to clarify the role of vimentin, an intermediate filament protein abundantly expressed in activated macrophages and foam cells, in macrophages during atherogenesis. Global gene expression, lipid uptake, ROS, and inflammation were analyzed in bone-marrow derived macrophages from vimentin-deficient (Vim-/-) and wild-type (Vim+/+) mice. Atherosclerosis was induced in Ldlr-/- mice transplanted with Vim-/- and Vim+/+ bone marrow, and in Vim-/- and Vim+/+ mice injected with a PCSK9 gain-of-function virus. The mice were fed an atherogenic diet for 12-15 weeks. We observed impaired uptake of native LDL but increased uptake of oxLDL in Vim-/- macrophages. FACS analysis revealed increased surface expression of the scavenger receptor CD36 on Vim-/- macrophages. Vim-/- macrophages also displayed increased markers of oxidative stress, activity of the transcription factor NF-κB, secretion of proinflammatory cytokines and GLUT1-mediated glucose uptake. Vim-/- mice displayed decreased atherogenesis despite increased vascular inflammation and increased CD36 expression on macrophages in two mouse models of atherosclerosis. We demonstrate that vimentin has a strong suppressive effect on oxidative stress and that Vim-/- mice display increased vascular inflammation with increased CD36 expression on macrophages despite decreased subendothelial lipid accumulation. Thus, vimentin has a key role in regulating inflammation in macrophages during atherogenesis.


Asunto(s)
Aterosclerosis/metabolismo , Macrófagos/metabolismo , Estrés Oxidativo , Vasculitis/metabolismo , Vimentina/genética , Animales , Antígenos CD36/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/inmunología , Ratones , Ratones Transgénicos , Vimentina/metabolismo
2.
Metabolism ; 65(7): 998-1006, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27282870

RESUMEN

OBJECTIVE: To identify a potential therapeutic target for type 2 diabetes by comparing the subcutaneous interstitial fluid from type 2 diabetes patients and healthy men. METHODS: Proteomics was performed on the interstitial fluid of subcutaneous adipose tissue obtained by microdialysis from 7 type 2 diabetes patients and 8 healthy participants. 851 proteins were detected, of which 36 (including galectin-1) showed significantly altered expression in type 2 diabetes. We also measured galectin-1 expression in: (1) adipocytes isolated from adipose tissue biopsies from these participants; (2) subcutaneous adipose tissue of 24 obese participants before, during and after 16weeks on a very low calorie diet (VLCD); and (3) adipocytes isolated from 6 healthy young participants after 4weeks on a diet and lifestyle intervention to promote weight gain. We also determined the effect of galectin-1 on glucose uptake in human adipose tissue. RESULTS: Galectin-1 protein levels were elevated in subcutaneous dialysates from type 2 diabetes compared with healthy controls (p<0.05). In agreement, galectin-1 mRNA expression was increased in adipocytes from the type 2 diabetes patients (p<0.05). Furthermore, galectin-1 mRNA expression was decreased in adipose tissue after VLCD (p<0.05) and increased by overfeeding (p<0.05). Co-incubation of isolated human adipocytes with galectin-1 reduced glucose uptake (p<0.05) but this was independent of the insulin signal. CONCLUSION: Proteomics of the interstitial fluid in subcutaneous adipose tissue in vivo identified a novel adipokine, galectin-1, with a potential role in the pathophysiology of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Líquido Extracelular/química , Galectina 1/análisis , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Proteómica
3.
Biochem Biophys Res Commun ; 437(2): 274-9, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23811271

RESUMEN

The very low density lipoprotein receptor (VLDLr) is highly upregulated during hypoxia in mouse cardiomyocytes and in human and mouse ischemic hearts causing a detrimental lipid accumulation. To know how the gene is regulated is important for future studies. In this study, we have thoroughly mapped the 5'-flanking region of the mouse VLDLr promoter and show that the hypoxia-mediated increase in VLDLr expression is dependent on Hif-1α binding to a hypoxia responsive element (HRE) located at -162 to -158bp 5'of translation start. We show that classical HRE sites and the previously described PPARγ and Sp1 binding are not involved in the hypoxia-induced regulation of the VLDLr promoter. Using a chromatin immunoprecipitation (ChIP) assay, we show that Hif-1α specifically binds and activates the mouse VLDLr promoter at the previously described non-classical HRE in HL-1 cells. We also show that the same HRE is present and active in response to hypoxia in human cardiomyocytes, however at a different location (-812bp from translation start). These results conclude that in the hypoxic hearts of mice and men, the VLDLr gene is regulated by a direct binding of Hif-1α to the VLDLr promoter.


Asunto(s)
Hipoxia/fisiopatología , Receptores de LDL/fisiología , Animales , Sitios de Unión , Línea Celular , Cartilla de ADN , Ratones , PPAR gamma/metabolismo , Regiones Promotoras Genéticas , Receptores de LDL/genética , Factor de Transcripción Sp1/metabolismo
4.
PLoS One ; 7(11): e48694, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185271

RESUMEN

Clear-cell renal cell carcinoma (RCC) is, in most cases, caused by loss of function of the tumor suppressor gene von Hippel-Lindau, resulting in constitutive activation of hypoxia-inducible factor (HIF)-1α and expression of hypoxia-induced genes in normoxic conditions. Clear-cell RCC cells are characterized histologically by accumulation of cholesterol, mainly in its ester form. The origin of the increased cholesterol remains unclear, but it is likely explained by an HIF-1α-driven imbalance between cholesterol uptake and excretion. Here, we showed that expression of the very low-density lipoprotein receptor (VLDL-R) was significantly increased in clear-cell RCC human biopsies compared with normal kidney tissue. Partial knockdown of HIF-1α in clear-cell RCC cells significantly reduced the VLDL-R expression, and knockdown of either HIF-1α or VLDL-R reduced the increased lipid accumulation observed in these cells. We also showed increased uptake of fluorescently labeled lipoproteins in clear-cell RCC cells, which was significantly reduced by knockdown of HIF-1α or VLDL-R. Taken together, our results support the concept that the pathological increase of HIF-1α in clear-cell RCC cells upregulates VLDL-R, which mediates increased uptake and accumulation of lipids. These results explain the morphological characteristics of clear-cell RCC, and open up novel possibilities for detection and treatment of clear-cell RCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Metabolismo de los Lípidos , Receptores de LDL/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Renales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA