Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Biol ; 22(8): e3002751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137170

RESUMEN

ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma , Microtúbulos , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Animales , Microtúbulos/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neurogénesis/genética , Células-Madre Neurales/metabolismo , Centrosoma/metabolismo , Proliferación Celular , Movimiento Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Tubulina (Proteína)/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética
2.
NPJ Precis Oncol ; 8(1): 36, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360856

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a five-year survival rate of less than 10% due to its late diagnosis, rapid metastasis, and chemotherapeutic resistance. For a small proportion (10-20%) of early-stage patients however, surgical resection of the pancreatic tumor offers the best chance for survival but the effect of surgery on disease dissemination is unknown. The primary objective of this study was to characterize cellular and acellular blood-based analytes in portal and peripheral blood before pancreatic manipulation, during tumor dissection and immediately after surgical resection to determine the effects of the surgery. This study used the non-enriching third generation High-Definition Single Cell Assay (HDSCA3.0) workflow to investigate heterogeneous circulating rare cell population in the blood. Blood from both sites taken before surgical manipulation of the pancreas had significantly greater incidence of total rare cellular and acellular analytes than normal donor samples. Post-surgery portal and peripheral blood had significantly greater incidence of specific cellular and acellular subtypes compared to the matched pre- and during-surgery samples. Our results reveal that in patients with PDAC liquid biopsy analytes are increased in both the portal and peripheral blood; portal blood contains a higher frequency of analytes than in the peripheral blood; total analytes in the portal and peripheral blood samples were significantly associated with the tumor volume and pathological T stage; and the surgical procedure increased the blood levels of circulating cellular and acellular analytes, but not Epi.CTCs or Mes.CTCs. This study demonstrates liquid biopsy's utility in monitoring patients with PDAC with surgically resectable disease.

3.
Adv Nutr ; 13(5): 2002-2014, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-35679067

RESUMEN

Prescribing a ketogenic diet (KD) is a century-old dietary intervention mainly used in the context of intractable epilepsy. The classic KD and its variants regained popularity in recent decades, and they are considered potentially beneficial in a variety of neurological conditions other than epilepsy. Many patients with multiple sclerosis (MS) have attempted diet modification for better control of their disease, although evidence thus far remains insufficient to recommend a specific diet for these patients. The results of 3 pilot clinical trials of KD therapy for MS, as well as several related studies, have been reported in recent years. The preliminary findings suggest that KD is safe, feasible, and potentially neuroprotective and disease-modifying for patients with MS. Research on corresponding rodent models has also lent support to the efficacy of KD in the prevention and treatment of experimental autoimmune encephalomyelitis and toxin-induced inflammatory demyelinating conditions in the brain. Furthermore, the animal studies have yielded mechanistic insights into the molecular mechanisms of KD action in relevant situations, paving the way for precision nutrition. Herein we review and synthesize recent advances and also identify unresolved issues, such as the roles of adipokines and gut microbiota, in this field. Hopefully this panoramic view of current understanding can inform future research directions and clinical practice with regard to KD in MS and related conditions.


Asunto(s)
Dieta Cetogénica , Epilepsia , Microbioma Gastrointestinal , Esclerosis Múltiple , Adipoquinas , Animales , Dieta Cetogénica/métodos , Humanos
4.
J Huntingtons Dis ; 8(3): 257-269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31381521

RESUMEN

BACKGROUND: Huntington's disease (HD) is an inherited neurodegenerative disease and is characterized by atrophy of certain regions of the brain in a progressive manner. HD patients experience behavioral changes and uncontrolled movements which can be primarily attributed to the atrophy of striatal neurons. Previous publications describe the models of the HD striatum using induced pluripotent stem cells (iPSCs) derived from HD patients with a juvenile onset (JHD). In this model, the JHD iPSC-derived striatal cultures had altered neurodevelopment and contained a high number of nestin expressing progenitor cells at 42 days of differentiation. OBJECTIVE: To further characterize the altered neurodevelopmental phenotype and evaluate potential phenotypic reversal. METHODS: Differentiation of human iPSCs towards striatal fate and characterization by means of immunocytochemistry and stereological quantification. RESULTS: Here this study demonstrates a distinct delay in the differentiation of the JHD neural progenitor population. However, reduction of the JHD aberrant progenitor populations can be accomplished either by targeting the canonical Notch signaling pathway or by treatment with HTT antisense oligonucleotides (ASOs). CONCLUSIONS: In summary, this data is postulated to reflect a potential overall developmental delay in JHD.


Asunto(s)
Cuerpo Estriado/crecimiento & desarrollo , Enfermedad de Huntington/fisiopatología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Diferenciación Celular , Células Cultivadas , Cuerpo Estriado/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Nestina/metabolismo , Receptores Notch/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA