Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 5093, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31704928

RESUMEN

To maintain the balance between long-term stem cell self-renewal and differentiation, dynamic signals need to be translated into spatially precise and temporally stable gene expression states. In the apical plant stem cell system, local accumulation of the small, highly mobile phytohormone auxin triggers differentiation while at the same time, pluripotent stem cells are maintained throughout the entire life-cycle. We find that stem cells are resistant to auxin mediated differentiation, but require low levels of signaling for their maintenance. We demonstrate that the WUSCHEL transcription factor confers this behavior by rheostatically controlling the auxin signaling and response pathway. Finally, we show that WUSCHEL acts via regulation of histone acetylation at target loci, including those with functions in the auxin pathway. Our results reveal an important mechanism that allows cells to differentially translate a potent and highly dynamic developmental signal into stable cell behavior with high spatial precision and temporal robustness.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Diferenciación Celular , Autorrenovación de las Células , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Células Madre Pluripotentes/metabolismo , Proliferación Celular , Meristema/citología , Brotes de la Planta , Plantas Modificadas Genéticamente , Células Madre Pluripotentes/citología , Transducción de Señal
2.
PLoS One ; 8(12): e83043, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376629

RESUMEN

Building expression constructs for transgenesis is one of the fundamental day-to-day tasks in modern biology. Traditionally it is based on a multitude of type II restriction endonucleases and T4 DNA ligase. Especially in case of long inserts and applications requiring high-throughput, this approach is limited by the number of available unique restriction sites and the need for designing individual cloning strategies for each project. Several alternative cloning systems have been developed in recent years to overcome these issues, including the type IIS enzyme based Golden Gate technique. Here we introduce our GreenGate system for rapidly assembling plant transformation constructs, which is based on the Golden Gate method. GreenGate cloning is simple and efficient since it uses only one type IIS restriction endonuclease, depends on only six types of insert modules (plant promoter, N-terminal tag, coding sequence, C-terminal tag, plant terminator and plant resistance cassette), but at the same time allows assembling several expression cassettes in one binary destination vector from a collection of pre-cloned building blocks. The system is cheap and reliable and when combined with a library of modules considerably speeds up cloning and transgene stacking for plant transformation.


Asunto(s)
Arabidopsis/genética , Clonación Molecular/métodos , Vectores Genéticos , Nicotiana/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Secuencia de Bases , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Proteínas de Plantas/química , Regiones Promotoras Genéticas , Regiones Terminadoras Genéticas , Transformación Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA