Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Neurosci ; 41(4): 578-593, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33262245

RESUMEN

The dynamic regulation of DNA methylation in postmitotic neurons is necessary for memory formation and other adaptive behaviors. Ten-eleven translocation 1 (TET1) plays a part in these processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), thereby initiating active DNA demethylation. However, attempts to pinpoint its exact role in the nervous system have been hindered by contradictory findings, perhaps due in part, to a recent discovery that two isoforms of the Tet1 gene are differentially expressed from early development into adulthood. Here, we demonstrate that both the shorter transcript (Tet1S ) encoding an N-terminally truncated TET1 protein and a full-length Tet1 (Tet1FL ) transcript encoding canonical TET1 are co-expressed in the adult mouse brain. We show that Tet1S is the predominantly expressed isoform and is highly enriched in neurons, whereas Tet1FL is generally expressed at lower levels and more abundant in glia, suggesting their roles are at least partially cell type-specific. Using viral-mediated, isoform and neuron-specific molecular tools, we find that the individual repression of each transcript leads to the dysregulation of unique gene ensembles and contrasting changes in basal synaptic transmission. In addition, Tet1S repression enhances, while Tet1FL impairs, hippocampal-dependent memory in male mice. Together, our findings demonstrate that each Tet1 isoform serves a distinct role in the mammalian brain.SIGNIFICANCE STATEMENT In the brain, activity-dependent changes in gene expression are required for the formation of long-term memories. DNA methylation plays an essential role in orchestrating these learning-induced transcriptional programs by influencing chromatin accessibility and transcription factor binding. Once thought of as a stable epigenetic mark, DNA methylation is now known to be impermanent and dynamically regulated, driving neuroplasticity in the brain. We found that Tet1, a member of the ten-eleven translocation (TET) family of enzymes that mediates removal of DNA methyl marks, is expressed as two separate isoforms in the adult mouse brain and that each differentially regulates gene expression, synaptic transmission and memory formation. Together, our findings demonstrate that each Tet1 isoform serves a distinct role in the CNS.


Asunto(s)
Encéfalo/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/genética , Memoria/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Animales , Ansiedad/genética , Ansiedad/psicología , Condicionamiento Clásico , Epigénesis Genética/fisiología , Miedo/psicología , Hipocampo/fisiología , Isomerismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/fisiología , Neuronas/fisiología
2.
Neurobiol Aging ; 32(12): 2198-210, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20189687

RESUMEN

The transcription of genes that support memory processes are likely to be impacted by the normal aging process. Because Arc is necessary for memory consolidation and enduring synaptic plasticity, we examined Arc transcription within the aged hippocampus. Here, we report that Arc transcription is reduced within the aged hippocampus compared to the adult hippocampus during both "off line" periods of rest, and following spatial behavior. This reduction is observed within ensembles of CA1 "place cells", which make less mRNA per cell, and in the dentate gyrus (DG) where fewer granule cells are activated by behavior. In addition, we present data suggesting that aberrant changes in methylation of the Arc gene may be responsible for age-related decreases in Arc transcription within CA1 and the DG. Given that Arc is necessary for normal memory function, these subregion-specific epigenetic and transcriptional changes may result in less efficient memory storage and retrieval during aging.


Asunto(s)
Envejecimiento/genética , Proteínas del Citoesqueleto/biosíntesis , Metilación de ADN/genética , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Transcripción Genética/fisiología , Envejecimiento/patología , Animales , Secuencia de Bases , Proteínas del Citoesqueleto/genética , Hipocampo/patología , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Endogámicas F344 , Conducta Espacial/fisiología
3.
Cell Mol Life Sci ; 63(9): 1009-16, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16596331

RESUMEN

In this review we address the idea that conservation of epigenetic mechanisms for information storage represents a unifying model in biology, with epigenetic mechanisms being utilized for cellular memory at levels from behavioral memory to development to cellular differentiation. Epigenetic mechanisms typically involve alterations in chromatin structure, which in turn regulate gene expression. An emerging idea is that the regulation of chromatin structure through histone acetylation and DNA methylation may mediate long-lasting behavioral change in the context of learning and memory. We find this idea fascinating because similar mechanisms are used for triggering and storing long-term 'memory' at the cellular level, for example when cells differentiate. An additional intriguing aspect of the hypothesis of a role for epigenetic mechanisms in information storage is that lifelong behavioral memory storage may involve lasting changes in the physical, three-dimensional structure of DNA itself.


Asunto(s)
Epigénesis Genética , Memoria/fisiología , Modelos Neurológicos , Plasticidad Neuronal/genética , Animales , Cromatina/genética , Hipocampo/metabolismo , Sistema Nervioso/metabolismo
4.
Neuroscience ; 133(4): 969-81, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15916859

RESUMEN

The transcription factor nuclear factor-kappa B (NF-kappaB) is an inducible regulator of genes that plays a crucial role in the nervous system. Glutamate receptor stimulation is one well-described mechanism for NF-kappaB activation. In the studies presented here we used the glutamate analog, kainate to investigate the signaling mechanisms that couple to NF-kappaB activation in hippocampus. Kainate (250 nM) application to hippocampal slices elicited a time-dependent increase in nuclear NF-kappaB levels in areas CA3 and CA1, but not dentate, compared with controls. Further analysis focused on hippocampal area CA3, revealed increased NF-kappaB DNA binding activity in response to kainate stimulation. Supershift electrophoretic mobility shift assay indicated that the kainate-mediated NF-kappaB complex binding DNA was composed of p65, p50, and c-Rel subunits. Through inhibition studies we found that extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol-3 kinase (PI3K) couple to basal and kainate-mediated NF-kappaB DNA binding activity in area CA3. Kainate elicited decreased total and increased phospho-inhibitor kappa B alpha (IkappaBalpha), suggesting that kainate-mediated activation of NF-kappaB is via the classical IkappaB kinase pathway. Interestingly, inhibition of ERK but not PI3K blocked the kainate-mediated increase in phospho-IkappaBalpha. Thus, our findings support a role for the ERK and PI3K pathways in kainate-mediated NF-kappaB activation in hippocampal area CA3, but these kinases may target the NF-kappaB pathway at different loci.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Ácido Kaínico/farmacología , Quinasas Quinasa Quinasa PAM/fisiología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Animales , Western Blotting/métodos , Cromonas/farmacología , Interacciones Farmacológicas , Ensayo de Cambio de Movilidad Electroforética/métodos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Inmunohistoquímica/métodos , Técnicas In Vitro , Lamina Tipo B/metabolismo , Masculino , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Tiempo
5.
Science ; 306(5697): 882-4, 2004 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-15514161

RESUMEN

The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.


Asunto(s)
Memoria/fisiología , Corteza Prefrontal/fisiología , Proteína Quinasa C/metabolismo , Agonistas alfa-Adrenérgicos/farmacología , Alcaloides , Animales , Benzofenantridinas , Carbolinas/farmacología , Electrofisiología , Activación Enzimática , Femenino , Imidazoles/farmacología , Carbonato de Litio/farmacología , Macaca mulatta , Masculino , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fenantridinas/farmacología , Corteza Prefrontal/enzimología , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiología , Transducción de Señal , Estrés Fisiológico/fisiopatología , Acetato de Tetradecanoilforbol/farmacología , Ácido Valproico/farmacología
6.
Neuroscience ; 126(2): 305-12, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15207348

RESUMEN

Alzheimer's disease is a learning and memory disorder pathologically characterized by the deposition of beta-amyloid plaques and loss of neurons and synapses in affected areas of the brain. Mutations in presenilin 1 (PS1) lead to the most aggressive form of familial Alzheimer's disease (FAD), and are associated with accelerated plaque deposition. However, since the function of PS1 is pleiotropic, we reasoned that the FAD mutations may alter multiple PS1-mediated pathways, and the combination of which may account for the early onset nature of the disease phenotype. Using the PS1M146V knockin mice in which the M146V mutation was incorporated into the endogenous mouse PS1 gene, we report here that the FAD mutation results in impaired hippocampus-dependent associative learning, as measured by a contextual fear conditioning paradigm, at 3 months of age. This is correlated with reduced adult neurogenesis in the dentate gyrus. However, short-term and long-term synaptic plasticity in both area CA1 and dentate gyrus are not affected. Our results suggest that impaired adult neurogenesis may contribute to the memory deficit associated with FAD.


Asunto(s)
Aprendizaje por Asociación/fisiología , Giro Dentado/citología , Giro Dentado/fisiología , Proteínas de la Membrana/genética , Mutación/genética , Animales , Condicionamiento Psicológico/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Presenilina-1
7.
Neuron ; 31(5): 671-4, 2001 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-11567607

RESUMEN

Studies of the signal transduction mechanisms underlying learning and memory have provided many new insights into the molecular mechanisms underlying associative conditioning in mammals. In this issue of Neuron, Gean and colleagues report the discovery that the PI-3 kinase/AKT(PKB) pathway contributes to LTP and the consolidation of amygdala-dependent cued fear conditioning in rats.


Asunto(s)
Amígdala del Cerebelo/fisiología , Memoria/fisiología , Proto-Oncogenes/fisiología , Animales , Condicionamiento Psicológico/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/fisiología
9.
J Neurosci ; 21(12): 4125-33, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11404397

RESUMEN

Alzheimer's Disease (AD) is the most common of the senile dementias, the prevalence of which is increasing rapidly, with a projected 14 million affected worldwide by 2025. The signal transduction mechanisms that underlie the learning and memory derangements in AD are poorly understood. beta-Amyloid (Abeta) peptides are elevated in brain tissue of AD patients and are the principal component of amyloid plaques, a major criterion for postmortem diagnosis of the disease. Using acute and organotypic hippocampal slice preparations, we demonstrate that Abeta peptide 1-42 (Abeta42) couples to the mitogen-activated protein kinase (MAPK) cascade via alpha7 nicotinic acetylcholine receptors (nAChRs). In vivo elevation of Abeta, such as that exhibited in an animal model for AD, leads to the upregulation of alpha7 nAChR protein. alpha7 nAChR upregulation occurs concomitantly with the downregulation of the 42 kDa isoform of extracellular signal-regulated kinase (ERK2) MAPK in hippocampi of aged animals. The phosphorylation state of a transcriptional mediator of long-term potentiation and a downstream target of the ERK MAPK cascade, the cAMP-regulatory element binding (CREB) protein, were affected also. These findings support the model that derangement of hippocampus signal transduction cascades in AD arises as a consequence of increased Abeta burden and chronic activation of the ERK MAPK cascade in an alpha7 nAChR-dependent manner that eventually leads to the downregulation of ERK2 MAPK and decreased phosphorylation of CREB protein.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptores Nicotínicos/metabolismo , Envejecimiento/metabolismo , Enfermedad de Alzheimer/etiología , Animales , Células Cultivadas , Enfermedad Crónica , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacología , Heterocigoto , Hipocampo/citología , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Nicotina/farmacología , Antagonistas Nicotínicos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/efectos de los fármacos , Regulación hacia Arriba , Receptor Nicotínico de Acetilcolina alfa 7
10.
J Neurochem ; 77(4): 961-71, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11359861

RESUMEN

Hippocampal long-term potentiation (LTP) is a robust and long-lasting form of synaptic plasticity that is the leading candidate for a cellular mechanism contributing to mammalian learning and memory. Investigations over the past decade have revealed that the biochemistry of LTP induction involves mechanisms of great subtlety and complexity. This review highlights themes that have emerged as a result of our increased knowledge of the signal transduction pathways involved in the induction of NMDA receptor-dependent LTP in area CA1 of the hippocampus. Among these themes are signal amplification, signal integration and signal coordination. Here we use these themes as an organizing context for reviewing the profusion of signaling mechanisms involved in the induction of LTP.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Animales , Calcio/fisiología , Retroalimentación , Hipocampo/metabolismo , Modelos Neurológicos , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal
11.
J Neurosci ; 21(10): 3383-91, 2001 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11331368

RESUMEN

Changes in gene expression are thought to be involved in neuronal plasticity associated with learning and memory. Although acetylation of lysine residues on histones by histone acetyltransferases (HAT) is an obligatory component of transcription, HAT activity has been largely ignored in studies of the nervous system. We developed a new model for studying novel taste learning using novel solid food presentation to nondeprived animals. Using this behavioral paradigm, we investigated short- and long-term regulation of lysine acetyltransferase activity and the ERK/mitogen-activated protein kinase (MAPK)/RSK cascade in insular cortex, a CNS region known to be crucial for the formation of novel taste memories. We observed that novel taste learning elicited biphasic (acute and long-lasting) activation of two distinct lysine acetyltransferase activities along with the ERK/MAPK cascade in insular cortex. In vitro studies revealed that the ERK cascade could regulate the lysine acetylation of a 42 kDa lysine acetyltransferase substrate, suggesting a causal relationship between ERK activation and lysine acetyltransferase activity in insular cortex. Overall, our studies reveal an unanticipated long-lasting activation of insular cortex signal transduction cascades in novel taste learning. Furthermore, our studies suggest the hypothesis that acute and long-term ERK activation and lysine-histone acetyltransferase activation may play a role in regulating gene expression in single-trial learning and long-term memory formation.


Asunto(s)
Acetiltransferasas/metabolismo , Corteza Cerebral/enzimología , Aprendizaje Discriminativo/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae , Gusto/fisiología , Acetilación/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Corteza Cerebral/química , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Aprendizaje Discriminativo/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Inhibidores Enzimáticos/farmacología , Histona Acetiltransferasas , Inhibidores de Histona Desacetilasas , Técnicas In Vitro , Cloruro de Litio/farmacología , Lisina/metabolismo , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Curr Biol ; 11(10): R391-4, 2001 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11378403

RESUMEN

Protein phosphorylation has long been known to play a key role in triggering the synaptic changes underlying learning and memory. Recent studies highlight the importance of tightly regulated dephosphorylation as a mechanism controlling the induction of long-term synaptic change and lasting memory.


Asunto(s)
Memoria/fisiología , Proteínas/metabolismo , Fosforilación , Proteínas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
13.
Mol Psychiatry ; 6(2): 246-8, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11317232

RESUMEN

Preliminary clinical data indicate that omega-3 fatty acids may be effective mood stabilizers for patients with bipolar disorder. Both lithium and valproic acid are known to inhibit protein kinase C (PKC) activity after subchronic administration in cell culture and in vivo. The current study was undertaken to determine the effects of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on protein kinase C phosphotransferase activity in vitro. Various concentrations of DHA, EPA, and arachidonic acid (AA) were incubated with the catalytic domain of protein kinase C beta from rat brain. Protein kinase C activity was measured by quantifying incorporation of (32)P-PO(4) into a synthetic peptide substrate. Both DHA and EPA, as well as the combination of DHA and EPA, inhibited PKC activity at concentrations as low as 10 micromol l(-1). In contrast, arachidonic acid had no effect on PKC activity. Thus, PKC represents a potential site of action of omega-3 fatty acids in their effects on the treatment of bipolar disorder.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Proteína Quinasa C/metabolismo , Animales , Ácido Araquidónico/farmacología , Ácidos Araquidónicos/farmacología , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/enzimología , Encéfalo/enzimología , Ácidos Docosahexaenoicos/farmacología , Activación Enzimática/efectos de los fármacos , Técnicas In Vitro , Ratas
14.
Rev Neurosci ; 12(1): 41-50, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11236064

RESUMEN

We address in this review the various types of chemical reactions that underlie memory storage in biological systems. Using examples from both invertebrate and mammalian learning systems, we describe three types of memory-storing reactions: short-term reactions mediated by transient changes in second messenger levels, long-term reactions mediated by species with long half lives, and ultralong-term or mnemogenic reactions that can store memory indefinitely, even in the face of ongoing turnover of the molecules involved.


Asunto(s)
Sistema Nervioso Central/metabolismo , Memoria/fisiología , Neuronas/metabolismo , Animales , Humanos , Modelos Animales , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/metabolismo , Sistemas de Mensajero Secundario/fisiología , Transmisión Sináptica/fisiología
15.
Learn Mem ; 8(1): 11-9, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11160759

RESUMEN

The extracellular signal-regulated kinases (ERKs) are members of the mitogen-activated protein kinase (MAPK) superfamily of enzymes and have recently garnered considerable attention in the field of learning and memory. ERK activation has been shown to be required for the induction of long-term potentiation (LTP) in the rat hippocampus and for the formation of associative and spatial memories in both the rat and the mouse. However, the individual roles for the two isoforms of ERK have yet to be deciphered. To investigate the specific contribution of the ERK1 (p44) isoform of MAPK to mammalian learning, we performed a general behavioral and physiological characterization of mice lacking the ERK1 gene. The ERK1-null animals demonstrated significantly higher levels of activity in the open field test. However, we observed no other discernible deficits in the ERK1 knockout mice in our behavioral testing. Specifically, no differences were observed in the acquisition or retention (24 h and 2 wk after training) of either contextual or cue fear conditioning between the ERK1(-/-) and their wild-type littermate controls. In addition, no learning phenotype was observed in the passive avoidance test. When hippocampal slices were analyzed, we found no deficits in baseline synaptic transmission or in tetanus-induced LTP in hippocampal area CA1. We found no apparent compensatory changes in the expression of ERK2 (p42 MAPK). We conclude that hippocampus- and amygdala-dependent emotional learning does not depend critically on the activity of ERK1.


Asunto(s)
Emociones/fisiología , Aprendizaje/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Animales , Hipocampo/fisiología , Ratones , Ratones Noqueados/genética , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Actividad Motora/fisiología , Valores de Referencia , Sensación/fisiología
16.
J Biol Chem ; 276(14): 10888-96, 2001 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-11152679

RESUMEN

Recent data suggest that omega-3 fatty acids may be effective in epilepsy, cardiovascular disorders, arthritis, and as mood stabilizers for bipolar disorder; however, the mechanism of action of these compounds is unknown. Based on earlier studies implicating omega-3 fatty acids as inhibitors of protein kinase C activity in intact cells, we hypothesized that omega-3 fatty acids may act through direct inhibition of second messenger-regulated kinases and sought to determine whether the omega-3 double bond might uniquely confer pharmacologic efficacy and potency for fatty acids of this type. In our studies we observed that omega-3 fatty acids inhibited the in vitro activities of cAMP-dependent protein kinase, protein kinase C, Ca(2+)/calmodulin-dependent protein kinase II, and the mitogen-activated protein kinase (MAPK). Our results with a series of long-chain fatty acid structural homologs suggest an important role for the omega-3 double bond in conferring inhibitory efficacy. To assess whether omega-3 fatty acids were capable of inhibiting protein kinases in living neurons, we evaluated their effect on signal transduction pathways in the hippocampus. We found that omega-3 fatty acids could prevent serotonin receptor-induced MAPK activation in hippocampal slice preparations. In addition, we evaluated the effect of omega-3 fatty acids on hippocampal long-term potentiation, a form of synaptic plasticity known to be dependent on protein kinase activation. We observed that omega-3 fatty acids blocked long-term potentiation induction without inhibiting basal synaptic transmission. Overall, our results from both in vitro and live cell preparations suggest that inhibition of second messenger-regulated protein kinases is one locus of action of omega-3 fatty acids.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Hipocampo/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Animales , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Omega-3/farmacología , Ratas , Transducción de Señal/efectos de los fármacos
17.
J Neurochem ; 76(1): 1-10, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11145972

RESUMEN

The mitogen-activated protein kinase (MAP kinase, MAPK) cascade, as the name implies, was originally discovered as a critical regulator of cell division and differentiation. As further details of this signaling cascade were worked out, it became clear that the MAPK cascade is in fact a prototype for a family of signaling cascades that share the motif of three serially linked kinases regulating each other by sequential phosphorylation. Thus, a revised nomenclature arose that uses the term MAPK to refer to the entire superfamily of signaling cascades (comprising the erks, the JNKs and the p38 stress activated protein kinases), and specifies the prototype MAPK as the extracellular signal-regulated kinase (erk). The two erk MAPK isoforms, p44 MAPK and p42 MAPK, are referred to as erk1 and erk2, respectively. The erks are abundantly expressed in neurons in the mature central nervous system, raising the question of why the prototype molecular regulators of cell division and differentiation are present in these non-dividing, terminally differentiated neurons. This review will describe the beginnings of an answer to this question. Interestingly, the general model has begun to emerge that the erk signaling system has been co-opted in mature neurons to function in synaptic plasticity and memory. Moreover, recent insights have led to the intriguing prospect that these molecules serve as biochemical signal integrators and molecular coincidence detectors for coordinating responses to extracellular signals in neurons. In this review I will first outline the essential components of this signal transduction cascade, and briefly describe recent results implicating the erks in mammalian synaptic plasticity and learning. I will then proceed to outline recent results implicating the erks as molecular signal integrators and, potentially, coincidence detectors. Finally, I will speculate on what the critical downstream effectors of the erks are in neurons, and how they might provide a readout of the integrated signal.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/enzimología , Canales de Potasio con Entrada de Voltaje , Transducción de Señal/fisiología , Animales , Reacción de Prevención/fisiología , Membrana Celular/metabolismo , Condicionamiento Psicológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Miedo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Canales de Potasio/metabolismo , Ratas , Canales de Potasio Shal , Transmisión Sináptica/fisiología
18.
J Neurochem ; 75(6): 2277-87, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11080179

RESUMEN

The mitogen-activated protein kinase ERK has recently become a focus of studies of synaptic plasticity and learning and memory. Due to the prominent role of potassium channels in regulating the electrical properties of membranes, modulation of these channels by ERK could play an important role in mediating learning-related synaptic plasticity in the CNS. Kv4.2 is a Shal-type potassium channel that passes an A-type current and is localized to dendrites and cell bodies in the hippocampus. The sequence of Kv4.2 contains several consensus sites for ERK phosphorylation. In the present studies, we tested the hypothesis that Kv4.2 is an ERK substrate. We determined that the Kv4.2 C-terminal cytoplasmic domain is an effective ERK2 substrate, and that it is phosphorylated at three sites: Thr(602), Thr(607), and Ser(616). We used this information to develop antibodies that recognize Kv4.2 phosphorylated by ERK2. One of our phospho-site-selective antibodies was generated using a triply phosphorylated peptide as the antigen. We determined that this antibody recognizes ERK-phosphorylated Kv4.2 in COS-7 cells transfected with Kv4.2 and native ERK-phosphorylated Kv4.2 in the rat hippocampus. These observations indicate that Kv4.2 is a substrate for ERK in vitro and in vivo, and suggest that ERK may regulate potassium-channel function by direct phosphorylation of the pore-forming alpha subunit.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Especificidad de Anticuerpos , Sitios de Unión/efectos de los fármacos , Western Blotting , Células COS , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Técnicas In Vitro , Proteína Quinasa 1 Activada por Mitógenos/farmacología , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Canales de Potasio/química , Estructura Terciaria de Proteína/efectos de los fármacos , Ratas , Canales de Potasio Shal
19.
J Neurosci ; 20(21): 8177-87, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11050141

RESUMEN

Although much has been learned about the neurobiological mechanisms underlying Pavlovian fear conditioning at the systems and cellular levels, relatively little is known about the molecular mechanisms underlying fear memory consolidation. The present experiments evaluated the role of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling cascade in the amygdala during Pavlovian fear conditioning. We first show that ERK/MAPK is transiently activated-phosphorylated in the amygdala, specifically the lateral nucleus (LA), at 60 min, but not 15, 30, or 180 min, after conditioning, and that this activation is attributable to paired presentations of tone and shock rather than to nonassociative auditory stimulation, foot shock sensitization, or unpaired tone-shock presentations. We next show that infusions of U0126, an inhibitor of ERK/MAPK activation, aimed at the LA, dose-dependently impair long-term memory of Pavlovian fear conditioning but leaves short-term memory intact. Finally, we show that bath application of U0126 impairs long-term potentiation in the LA in vitro. Collectively, these results demonstrate that ERK/MAPK activation is necessary for both memory consolidation of Pavlovian fear conditioning and synaptic plasticity in the amygdala.


Asunto(s)
Amígdala del Cerebelo/enzimología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Memoria/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estimulación Acústica , Animales , Asociación , Western Blotting , Butadienos/farmacología , Electrochoque , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Inmunohistoquímica , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Plasticidad Neuronal/fisiología , Nitrilos/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
20.
Learn Mem ; 7(5): 321-32, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11040264

RESUMEN

Voltage-gated A-type potassium channels such as Kv4.2 regulate generation of action potentials and are localized abundantly in the hippocampus and striatum. Phosphorylation consensus sites for various kinases exist within the sequence of the potassium channel subunit Kv4.2, including consensus sites for extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK), protein kinase A (PKA), protein kinase C (PKC), and calcium/calmodulin-dependent kinase II (CaMKII), and kinase assays have shown that particular amino acids of the consensus sites are bonafide phosphorylation sites in vitro. We have developed antibodies recognizing Kv4.2 triply phosphorylated at the three ERK sites as well as two antibodies recognizing singly phosphorylated Kv4.2 channels at the PKA sites (one amino-terminal and one carboxy-terminal). In the present study, we report the development of reliable immunohistochemistry protocols to study the localization of these phosphorylated versions of Kv4.2, as well as total Kv4.2 in the mouse brain. A general description of the areas highlighted by these antibodies includes the hippocampus, amygdala, cortex, and cerebellum. Such areas display robust synaptic plasticity and have been implicated in spatial, associative, and motor learning. Interestingly, in the hippocampus, the antibodies to differentially phosphorylated Kv4.2 channels localize to specific afferent pathways, indicating that the Kv4.2 phosphorylation state may be input specific. For example, the stratum lacunosum moleculare, which receives inputs from the entorhinal cortex via the perforant pathway, displays relatively little ERK-phosphorylated Kv4.2 or PKA carboxy-terminal-phosphorylated Kv4.2. However, this same layer is highlighted by antibodies that recognize Kv4.2 that has been phosphorylated by PKA at the amino terminus. Similarly, of the three antibodies tested, the soma of CA3 neurons are primarily recognized by the ERK triply phosphorylated Kv4.2 antibody, and the mossy fiber inputs to CA3 are primarily recognized by the carboxy-terminal PKA-phosphorylated Kv4.2. This differential phosphorylation is particularly interesting in two contexts. First, phosphorylation may be serving as a mechanism for targeting. For example, the amino-terminal PKA phosphorylation may be acting as a tag for a discrete pool of Kv4.2 to enter stratum lacunosum moleculare. Second, as phosphorylation may regulate channel biophysical properties, differential phosphorylation of Kv4.2 in the dendrites of pyramidal neurons may confer unique biophysical properties upon particular dendritic input layers.


Asunto(s)
Encéfalo/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Cerebelo/metabolismo , Hipocampo/metabolismo , Inmunohistoquímica , Ratones , Fosforilación , Isoformas de Proteínas/metabolismo , Canales de Potasio Shal , Corteza Somatosensorial/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA