Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260588

RESUMEN

The immune system comprises multiple cell lineages and heterogeneous subsets found in blood and tissues throughout the body. While human immune responses differ between sites and over age, the underlying sources of variation remain unclear as most studies are limited to peripheral blood. Here, we took a systems approach to comprehensively profile RNA and surface protein expression of over 1.25 million immune cells isolated from blood, lymphoid organs, and mucosal tissues of 24 organ donors aged 20-75 years. We applied a multimodal classifier to annotate the major immune cell lineages (T cells, B cells, innate lymphoid cells, and myeloid cells) and their corresponding subsets across the body, leveraging probabilistic modeling to define bases for immune variations across donors, tissue, and age. We identified dominant tissue-specific effects on immune cell composition and function across lineages for lymphoid sites, intestines, and blood-rich tissues. Age-associated effects were intrinsic to both lineage and site as manifested by macrophages in mucosal sites, B cells in lymphoid organs, and T and NK cells in blood-rich sites. Our results reveal tissue-specific signatures of immune homeostasis throughout the body and across different ages. This information provides a basis for defining the transcriptional underpinnings of immune variation and potential associations with disease-associated immune pathologies across the human lifespan.

2.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37461466

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and dissecting transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins, as in cells of the immune system. Cellular Indexing of Transcriptomes and Epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell type annotation requires a classifier that integrates multimodal data. Here, we describe MultiModal Classifier Hierarchy (MMoCHi), a marker-based approach for classification, reconciling gene and protein expression without reliance on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal novel subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.

3.
Immunity ; 56(8): 1894-1909.e5, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421943

RESUMEN

Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.


Asunto(s)
Tejido Linfoide , Células T de Memoria , Niño , Humanos , Lactante , Linfocitos T CD8-positivos , Memoria Inmunológica , Tejido Linfoide/metabolismo , Membrana Mucosa , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Recién Nacido , Preescolar
4.
Immunol Rev ; 316(1): 23-37, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37211646

RESUMEN

Tissue-resident memory T cells (TRM) represent a dedicated layer of localized immune memory in virtually every organ throughout the human body. By virtue of their long-term residence in disparate tissues, TRM are shaped by a myriad of site-specific influences and exhibit remarkable heterogeneity in form and function. Here, we review the major axes by which TRM vary, including their surface phenotypes, transcriptional programming, and the tissue-specific adaptations that accrue over their tenancy. We discuss how localization within distinct anatomic niches both within and across major organ systems shapes TRM identity and examine mechanisms and prevailing models for TRM generation. Understanding the drivers of differentiation, function and maintenance of the various subpopulations that together define the TRM lineage may hold the key to unlocking the full potential of TRM to promote localized and protective tissue immunity throughout the body.


Asunto(s)
Memoria Inmunológica , Células T de Memoria , Humanos , Fenotipo , Diferenciación Celular , Linfocitos T CD8-positivos
5.
Nat Immunol ; 24(2): 309-319, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658238

RESUMEN

T lymphocytes migrate to barrier sites after exposure to pathogens, providing localized immunity and long-term protection. Here, we obtained blood and tissues from human organ donors to examine T cells across major barrier sites (skin, lung, jejunum), associated lymph nodes, lymphoid organs (spleen, bone marrow), and in circulation. By integrating single-cell protein and transcriptome profiling, we demonstrate that human barrier sites contain tissue-resident memory T (TRM) cells that exhibit site-adapted profiles for residency, homing and function distinct from circulating memory T cells. Incorporating T cell receptor and transcriptome analysis, we show that circulating memory T cells are highly expanded, display extensive overlap between sites and exhibit effector and cytolytic functional profiles, while TRM clones exhibit site-specific expansions and distinct functional capacities. Together, our findings indicate that circulating T cells are more disseminated and differentiated, while TRM cells exhibit tissue-specific adaptation and clonal segregation, suggesting that strategies to promote barrier immunity require tissue targeting.


Asunto(s)
Memoria Inmunológica , Células T de Memoria , Humanos , Ganglios Linfáticos , Células Clonales , Diferenciación Celular , Linfocitos T CD8-positivos
6.
Nat Med ; 28(12): 2622-2632, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36411343

RESUMEN

Older people are particularly susceptible to infectious and neoplastic diseases of the lung and it is unclear how lifelong exposure to environmental pollutants affects respiratory immune function. In an analysis of human lymph nodes (LNs) from 84 organ donors aged 11-93 years, we found a specific age-related decline in lung-associated, but not gut-associated, LN immune function linked to the accumulation of inhaled atmospheric particulate matter. Increasing densities of particulates were found in lung-associated LNs with age, but not in the corresponding gut-associated LNs. Particulates were specifically contained within CD68+CD169- macrophages, which exhibited decreased activation, phagocytic capacity, and altered cytokine production compared with non-particulate-containing macrophages. The structures of B cell follicles and lymphatic drainage were also disrupted in lung-associated LNs with particulates. Our results reveal that the cumulative effects of environmental exposure and age may compromise immune surveillance of the lung via direct effects on immune cell function and lymphoid architecture.


Asunto(s)
Pulmón , Ganglios Linfáticos , Humanos , Anciano , Ganglios Linfáticos/patología , Susceptibilidad a Enfermedades/patología , Polvo , Inmunidad
7.
JCI Insight ; 7(11)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35446789

RESUMEN

Respiratory failure in COVID-19 is characterized by widespread disruption of the lung's alveolar gas exchange interface. To elucidate determinants of alveolar lung damage, we performed epithelial and immune cell profiling in lungs from 24 COVID-19 autopsies and 43 uninfected organ donors ages 18-92 years. We found marked loss of type 2 alveolar epithelial (T2AE) cells and increased perialveolar lymphocyte cytotoxicity in all fatal COVID-19 cases, even at early stages before typical patterns of acute lung injury are histologically apparent. In lungs from uninfected organ donors, there was also progressive loss of T2AE cells with increasing age, which may increase susceptibility to COVID-19-mediated lung damage in older individuals. In the fatal COVID-19 cases, macrophage infiltration differed according to the histopathological pattern of lung injury. In cases with acute lung injury, we found accumulation of CD4+ macrophages that expressed distinctly high levels of T cell activation and costimulation genes and strongly correlated with increased extent of alveolar epithelial cell depletion and CD8+ T cell cytotoxicity. Together, our results show that T2AE cell deficiency may underlie age-related COVID-19 risk and initiate alveolar dysfunction shortly after infection, and we define immune cell mediators that may contribute to alveolar injury in distinct pathological stages of fatal COVID-19.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Lesión Pulmonar Aguda/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/patología , Autopsia , Humanos , Pulmón/patología , Persona de Mediana Edad , Adulto Joven
8.
Cell Rep ; 37(9): 110071, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34852222

RESUMEN

The persistence of anti-viral immunity is essential for protection and exhibits profound heterogeneity across individuals. Here, we elucidate the factors that shape maintenance and function of anti-viral T cell immunity in the body by comprehensive profiling of virus-specific T cells across blood, lymphoid organs, and mucosal tissues of organ donors. We use flow cytometry, T cell receptor sequencing, single-cell transcriptomics, and cytokine analysis to profile virus-specific CD8+ T cells recognizing the ubiquitous pathogens influenza and cytomegalovirus. Our results reveal that virus specificity determines overall magnitude, tissue distribution, differentiation, and clonal repertoire of virus-specific T cells. Age and sex influence T cell differentiation and dissemination in tissues, while T cell tissue residence and functionality are highly correlated with the site. Together, our results demonstrate how the covariates of virus, tissue, age, and sex impact the anti-viral immune response, which is important for targeting, monitoring, and predicting immune responses to existing and emerging viruses.


Asunto(s)
Antivirales/farmacología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Memoria Inmunológica/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Adulto , Factores de Edad , Niño , Preescolar , Citocinas/metabolismo , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/virología , Femenino , Humanos , Lactante , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Activación de Linfocitos , Masculino , Receptores de Antígenos de Linfocitos T/inmunología , Factores Sexuales , Análisis de la Célula Individual , Transcriptoma
9.
Sci Immunol ; 6(65): eabl9105, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618554

RESUMEN

Adaptive immune responses to SARS-CoV-2 infection have been extensively characterized in blood; however, most functions of protective immunity must be accomplished in tissues. Here, we report from examination of SARS-CoV-2 seropositive organ donors (ages 10 to 74) that CD4+ T, CD8+ T, and B cell memory generated in response to infection is present in the bone marrow, spleen, lung, and multiple lymph nodes (LNs) for up to 6 months after infection. Lungs and lung-associated LNs were the most prevalent sites for SARS-CoV-2­specific memory T and B cells with significant correlations between circulating and tissue-resident memory T and B cells in all sites. We further identified SARS-CoV-2­specific germinal centers in the lung-associated LNs up to 6 months after infection. SARS-CoV-2­specific follicular helper T cells were also abundant in lung-associated LNs and lungs. Together, the results indicate local tissue coordination of cellular and humoral immune memory against SARS-CoV-2 for site-specific protection against future infectious challenges.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunidad Celular , Memoria Inmunológica , Linfocitos/inmunología , SARS-CoV-2/inmunología , Femenino , Humanos , Masculino , Especificidad de Órganos/inmunología
10.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33765436

RESUMEN

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


Asunto(s)
COVID-19/inmunología , Pulmón/inmunología , Células Mieloides/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/mortalidad , COVID-19/patología , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Inflamación , Estudios Longitudinales , Pulmón/patología , Macrófagos/inmunología , Macrófagos/patología , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Células Mieloides/patología , SARS-CoV-2 , Linfocitos T/inmunología , Linfocitos T/patología , Transcriptoma , Adulto Joven
11.
Nat Immunol ; 22(1): 25-31, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33154590

RESUMEN

Clinical manifestations of COVID-19 caused by the new coronavirus SARS-CoV-2 are associated with age1,2. Adults develop respiratory symptoms, which can progress to acute respiratory distress syndrome (ARDS) in the most severe form, while children are largely spared from respiratory illness but can develop a life-threatening multisystem inflammatory syndrome (MIS-C)3-5. Here, we show distinct antibody responses in children and adults after SARS-CoV-2 infection. Adult COVID-19 cohorts had anti-spike (S) IgG, IgM and IgA antibodies, as well as anti-nucleocapsid (N) IgG antibody, while children with and without MIS-C had reduced breadth of anti-SARS-CoV-2-specific antibodies, predominantly generating IgG antibodies specific for the S protein but not the N protein. Moreover, children with and without MIS-C had reduced neutralizing activity as compared to both adult COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children independent of whether they develop MIS-C, with implications for developing age-targeted strategies for testing and protecting the population.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , COVID-19/inmunología , Proteínas de la Nucleocápside/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , COVID-19/virología , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/fisiología , Adulto Joven
12.
medRxiv ; 2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33106817

RESUMEN

Immune responses to respiratory viruses like SARS-CoV-2 originate and function in the lung, yet assessments of human immunity are often limited to blood. Here, we conducted longitudinal, high-dimensional profiling of paired airway and blood samples from patients with severe COVID-19, revealing immune processes in the respiratory tract linked to disease pathogenesis. Survival from severe disease was associated with increased CD4 + T cells and decreased monocyte/macrophage frequencies in the airway, but not in blood. Airway T cells and macrophages exhibited tissue-resident phenotypes and activation signatures, including high level expression and secretion of monocyte chemoattractants CCL2 and CCL3 by airway macrophages. By contrast, monocytes in blood expressed the CCL2-receptor CCR2 and aberrant CD163 + and immature phenotypes. Extensive accumulation of CD163 + monocyte/macrophages within alveolar spaces in COVID-19 lung autopsies suggested recruitment from circulation. Our findings provide evidence that COVID-19 pathogenesis is driven by respiratory immunity, and rationale for site-specific treatment and prevention strategies.

13.
medRxiv ; 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32699861

RESUMEN

Clinical manifestations of COVID-19 caused by the novel coronavirus SARS-CoV-2 are associated with age. While children are largely spared from severe respiratory disease, they can present with a SARS-CoV-2-associated multisystem inflammatory syndrome (MIS-C) similar to Kawasaki's disease. Here, we show distinct antibody (Ab) responses in children with MIS-C compared to adults with severe COVID-19 causing acute respiratory distress syndrome (ARDS), and those who recovered from mild disease. There was a reduced breadth and specificity of anti-SARS-CoV-2-specific antibodies in MIS-C patients compared to the COVID patient groups; MIS-C predominantly generated IgG Abs specific for the Spike (S) protein but not for the nucleocapsid (N) protein, while both COVID-19 cohorts had anti-S IgG, IgM and IgA Abs, as well as anti-N IgG Abs. Moreover, MIS-C patients had reduced neutralizing activity compared to COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children and adults who develop severe disease, with implications for optimizing treatments based on symptom and age.

14.
Cell ; 180(4): 749-763.e13, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059780

RESUMEN

Immune responses in diverse tissue sites are critical for protective immunity and homeostasis. Here, we investigate how tissue localization regulates the development and function of human natural killer (NK) cells, innate lymphocytes important for anti-viral and tumor immunity. Integrating high-dimensional analysis of NK cells from blood, lymphoid organs, and mucosal tissue sites from 60 individuals, we identify tissue-specific patterns of NK cell subset distribution, maturation, and function maintained across age and between individuals. Mature and terminally differentiated NK cells with enhanced effector function predominate in blood, bone marrow, spleen, and lungs and exhibit shared transcriptional programs across sites. By contrast, precursor and immature NK cells with reduced effector capacity populate lymph nodes and intestines and exhibit tissue-resident signatures and site-specific adaptations. Together, our results reveal anatomic control of NK cell development and maintenance as tissue-resident populations, whereas mature, terminally differentiated subsets mediate immunosurveillance through diverse peripheral sites. VIDEO ABSTRACT.


Asunto(s)
Envejecimiento/inmunología , Células Asesinas Naturales/citología , Linfopoyesis , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD/genética , Antígenos CD/metabolismo , Células Cultivadas , Niño , Femenino , Humanos , Inmunidad Innata , Mucosa Intestinal/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Pulmón/citología , Ganglios Linfáticos/citología , Masculino , Persona de Mediana Edad , Bazo/citología
15.
Nat Commun ; 10(1): 4706, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624246

RESUMEN

Human T cells coordinate adaptive immunity in diverse anatomic compartments through production of cytokines and effector molecules, but it is unclear how tissue site influences T cell persistence and function. Here, we use single cell RNA-sequencing (scRNA-seq) to define the heterogeneity of human T cells isolated from lungs, lymph nodes, bone marrow and blood, and their functional responses following stimulation. Through analysis of >50,000 resting and activated T cells, we reveal tissue T cell signatures in mucosal and lymphoid sites, and lineage-specific activation states across all sites including distinct effector states for CD8+ T cells and an interferon-response state for CD4+ T cells. Comparing scRNA-seq profiles of tumor-associated T cells to our dataset reveals predominant activated CD8+ compared to CD4+ T cell states within multiple tumor types. Our results therefore establish a high dimensional reference map of human T cell activation in health for analyzing T cells in disease.


Asunto(s)
Pulmón/metabolismo , Ganglios Linfáticos/metabolismo , Neoplasias/genética , Análisis de la Célula Individual/métodos , Linfocitos T/metabolismo , Transcriptoma/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Humanos , Ganglios Linfáticos/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Neoplasias/patología , Linfocitos T/inmunología
16.
Sci Immunol ; 4(34)2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952804

RESUMEN

The discovery of T cells resident in diverse tissues has altered our understanding of adaptive immunity to encompass site-specific responses mediated by tissue-adapted memory T cells throughout the body. Here, we discuss the key phenotypic, transcriptional, and functional features of these tissue-resident memory T cells (TRM) as established in mouse models of infection and translated to humans by novel tissue sampling approaches. Integration of findings from mouse and human studies may hold the key to unlocking the potential of TRM for promoting tissue immunity and preventing infection.


Asunto(s)
Memoria Inmunológica , Infecciones/inmunología , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
17.
Mucosal Immunol ; 12(2): 378-389, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30523311

RESUMEN

Defining adaptive immunity with the complex structures of the human gastrointestinal (GI) tract over life is essential for understanding immune responses to ingested antigens, commensal and pathogenic microorganisms, and dysfunctions in disease. We present here an analysis of lymphocyte localization and T cell subset composition across the human GI tract including mucosal sites (jejunum, ileum, colon), gut-associated lymphoid tissues (isolated lymphoid follicles (ILFs), Peyer's patches (PPs), appendix), and mesenteric lymph nodes (MLNs) from a total of 68 donors spanning eight decades of life. In pediatric donors, ILFs and PP containing naïve T cells and regulatory T cells (Tregs) are prevalent in the jejunum and ileum, respectively; these decline in frequency with age, contrasting stable frequencies of ILFs and T cell subsets in the colon. In the mucosa, tissue resident memory T cells develop during childhood, and persist in high frequencies into advanced ages, while T cell composition changes with age in GALT and MLN. These spatial and temporal features of human intestinal T cell immunity define signatures that can be used to train predictive machine learning algorithms. Our findings demonstrate an anatomic basis for age-associated alterations in immune responses, and establish a quantitative baseline for intestinal immunity to define disease pathologies.


Asunto(s)
Envejecimiento/fisiología , Duodeno/inmunología , Íleon/inmunología , Mucosa Intestinal/inmunología , Yeyuno/inmunología , Ganglios Linfáticos/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Células Cultivadas , Niño , Humanos , Inmunidad Celular , Especificidad de Órganos , Ganglios Linfáticos Agregados/inmunología
18.
Bioinspir Biomim ; 13(4): 046008, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29848795

RESUMEN

An experimental investigation of the lift performance of an artificial platform at the scale of the dragonfly species Sympetrum sanguineum is presented. The platform, as well as the lift sensor, was custom designed and built. The flapping mechanism consisted of a piezoelectric bending-beam actuator, a transmission using carbon-fiber elements and polymide-film joints, and wings constructed of polyester film with a carbon-fiber support structure. The flapping kinematics of the Sympetrum sanguineum was replicated as closely as possible although only a pair of forewings were used in these experiments. The lift generated, when accounting for the addition of a pair of hindwings, is predicted to be sufficient to allow for the hovering of a dragonfly. The results, the first at-scale fully transient measurements of artificial dragonfly forewings, show that the lift curves quantitatively as well as qualitatively validate existing two-dimensional and three-dimensional computer simulations of dragonfly forewings.


Asunto(s)
Vuelo Animal/fisiología , Modelos Biológicos , Odonata/fisiología , Alas de Animales/fisiología , Animales , Fenómenos Biomecánicos , Materiales Biomiméticos , Biomimética , Simulación por Computador , Diseño de Equipo , Imagenología Tridimensional , Robótica/instrumentación
19.
PLoS Biol ; 15(6): e2001930, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28632753

RESUMEN

Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vß-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses.


Asunto(s)
Antígenos Bacterianos/toxicidad , Anergia Clonal , Modelos Inmunológicos , Células T Invariantes Asociadas a Mucosa/inmunología , Staphylococcus aureus/inmunología , Streptococcus pyogenes/inmunología , Superantígenos/toxicidad , Animales , Antígenos Bacterianos/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Línea Celular , Células Cultivadas , Anergia Clonal/efectos de los fármacos , Cruzamientos Genéticos , Enterotoxinas/metabolismo , Enterotoxinas/toxicidad , Femenino , Humanos , Hibridomas , Inmunidad Innata , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Células T Invariantes Asociadas a Mucosa/citología , Células T Invariantes Asociadas a Mucosa/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/metabolismo , Organismos Libres de Patógenos Específicos , Staphylococcus aureus/metabolismo , Streptococcus pyogenes/metabolismo , Superantígenos/metabolismo , Quimera por Trasplante/sangre , Quimera por Trasplante/inmunología , Quimera por Trasplante/metabolismo
20.
J Immunol ; 198(7): 2805-2818, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28219889

RESUMEN

Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells, we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4+ effector memory T (TEM) cells that secrete IL-17A, but not IFN-γ, was responsible for early IL-17A production. We found mouse "TEM-17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore, interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP δ expression. Finally, the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together, our findings identify CD4+ TEM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic, as opposed to protective, role for IL-17A during Gram-positive bacterial infections. Accordingly, the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses.


Asunto(s)
Interleucina-17/inmunología , Choque Séptico/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Infecciones por Bacterias Grampositivas/inmunología , Humanos , Memoria Inmunológica/inmunología , Interleucina-17/biosíntesis , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Choque Séptico/metabolismo , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA