RESUMEN
Members of the leucine rich repeat (LRR) and PDZ domain (LAP) protein family are essential for animal development and histogenesis. Densin-180, encoded by LRRC7, is the only LAP protein selectively expressed in neurons. Densin-180 is a postsynaptic scaffold at glutamatergic synapses, linking cytoskeletal elements with signalling proteins such as the α-subunit of Ca2+/calmodulin-dependent protein kinase II. We have previously observed an association between high impact variants in LRRC7 and Intellectual Disability; also three individual cases with variants in LRRC7 had been described. We identify here 33 individuals (one of them previously described) with a dominant neurodevelopmental disorder due to heterozygous missense or loss-of-function variants in LRRC7. The clinical spectrum involves intellectual disability, autism, ADHD, aggression and, in several cases, hyperphagia-associated obesity. A PDZ domain variant interferes with synaptic targeting of Densin-180 in primary cultured neurons. Using in vitro systems (two hybrid, BioID, coimmunoprecipitation of tagged proteins from 293T cells) we identified new candidate interaction partners for the LRR domain, including protein phosphatase 1 (PP1), and observed that variants in the LRR reduced binding to these proteins. We conclude that LRRC7 encodes a major determinant of intellectual development and behaviour.
Asunto(s)
Agresión , Trastorno Autístico , Discapacidad Intelectual , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Adulto Joven , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Células HEK293 , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Dominios PDZ/genética , Sinapsis/metabolismoRESUMEN
Microduplications involving the MYT1L gene have mostly been described in series of patients with isolated schizophrenia. However, few reports have been published, and the phenotype has still not been well characterized. We sought to further characterize the phenotypic spectrum of this condition by describing the clinical features of patients with a pure 2p25.3 microduplication that includes all or part of MYT1L. We assessed 16 new patients with pure 2p25.3 microduplications recruited through a French national collaboration (n = 15) and the DECIPHER database (n = 1). We also reviewed 27 patients reported in the literature. For each case, we recorded clinical data, the microduplication size, and the inheritance pattern. The clinical features were variable and included developmental and speech delays (33%), autism spectrum disorder (ASD, 23%), mild-to-moderate intellectual disability (ID, 21%), schizophrenia (23%), or behavioral disorders (16%). Eleven patients did not have an obvious neuropsychiatric disorder. The microduplications ranged from 62.4 kb to 3.8 Mb in size and led to duplication of all or part of MYT1L; seven of these duplications were intragenic. The inheritance pattern was available for 18 patients: the microduplication was inherited in 13 cases, and all parents but one had normal phenotype. Our comprehensive review and expansion of the phenotypic spectrum associated with 2p25.3 microduplications involving MYT1L should help clinicians to better assess, counsel and manage affected individuals. MYT1L microduplications are characterized by a spectrum of neuropsychiatric phenotypes with incomplete penetrance and variable expressivity, which are probably due to as-yet unknown genetic and nongenetic modifiers.
Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Humanos , Fenotipo , Discapacidad Intelectual/genética , Patrón de Herencia , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genéticaRESUMEN
OBJECTIVE: We aimed to gather fetal cases carrying a 7q11.23 copy number variation (CNV) and collect precise clinical data to broaden knowledge of antenatal features in these syndromes. METHODS: We retrospectively recruited unrelated cases with 7q11.23 deletion, known as Williams-Beuren syndrome (WBS), or 7q11.23 duplication who had prenatal ultrasound findings. We collected laboratory and clinical data, fetal ultrasound, cardiac ultrasound and fetal autopsy reports from 18 prenatal diagnostic centers throughout France. RESULTS: 40 fetuses with WBS were collected and the most common features were intra-uterine growth retardation (IUGR) (70.0%, 28/40), cardiovascular defects (30.0%, 12/40), polyhydramnios (17.5%, 7/40) and protruding tongue (15.0%, 6/40). Fetal autopsy reports were available for 11 cases and were compared with ultrasound prenatal features. Four cases of fetuses with 7q11.23 microduplication were collected and prenatal ultrasound signs were variable and often isolated. CONCLUSION: This work strengthens the fact that 7q11.23 CNVs are associated with a broad spectrum of antenatal presentations. IUGR and cardiovascular defects were the most frequent ultrasound signs. By reporting the biggest series of antenatal WBS, we aim to better delineate distinctive signs in fetuses with 7q11.23 CNVs.
Asunto(s)
Síndrome de Williams , Humanos , Femenino , Embarazo , Síndrome de Williams/diagnóstico por imagen , Síndrome de Williams/genética , Síndrome de Williams/complicaciones , Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Retardo del Crecimiento Fetal , UltrasonografíaRESUMEN
SHANK3-related Phelan-McDermid syndrome (PMS) is caused by a loss of the distal part of chromosome 22, including SHANK3, or by a pathological SHANK3 variant. There is an important genetic and phenotypic diversity among patients who can present with developmental delay, language impairments, autism, epilepsy, and other symptoms. SHANK3, encoding a synaptic scaffolding protein, is deleted in the majority of patients with PMS and is considered a major gene involved in the neurological impairments of the patients. However, differences in deletion size can influence clinical features, and in some rare cases, deletions at the 22q13 locus in individuals with SHANK3-unrelated PMS do not encompass SHANK3. These individuals with SHANK3-unrelated PMS still display a PMS-like phenotype. This suggests the participation of other 22q13 genes in the pathogenesis of PMS. Here, we review the biological function and potential implication in PMS symptoms of 110 genes located in the 22q13 region, focusing on 35 genes with evidence for association with neurodevelopmental disorders, including 13 genes for epilepsy and 11 genes for microcephaly and/or macrocephaly. Our review is restricted to the 22q13 region, but future large-scale studies using whole genome sequencing and deep-phenotyping are warranted to develop predictive models of clinical trajectories and to target specific medical and educational care for each individual with PMS.
Asunto(s)
Trastornos de los Cromosomas , Humanos , Trastornos de los Cromosomas/patología , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , FenotipoRESUMEN
Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.
Asunto(s)
Síndrome de DiGeorge , Síndrome de Down , Epilepsia , Discapacidad Intelectual , Microcefalia , Humanos , Cromosomas Humanos Par 1 , Hipotonía Muscular , Deleción Cromosómica , FenotipoRESUMEN
CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.
Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Deleción Cromosómica , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo , Proteínas Represoras/genéticaRESUMEN
A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.
Asunto(s)
Anomalías Múltiples , Microcefalia , Humanos , Hibridación Genómica Comparativa , Anomalías Múltiples/genética , Microcefalia/genética , Síndrome , Estudios de Asociación GenéticaRESUMEN
Synapsin-I (SYN1) is a presynaptic phosphoprotein crucial for synaptogenesis and synaptic plasticity. Pathogenic SYN1 variants are associated with variable X-linked neurodevelopmental disorders mainly affecting males. In this study, we expand on the clinical and molecular spectrum of the SYN1-related neurodevelopmental disorders by describing 31 novel individuals harboring 22 different SYN1 variants. We analyzed newly identified as well as previously reported individuals in order to define the frequency of key features associated with these disorders. Specifically, behavioral disturbances such as autism spectrum disorder or attention deficit hyperactivity disorder are observed in 91% of the individuals, epilepsy in 82%, intellectual disability in 77%, and developmental delay in 70%. Seizure types mainly include tonic-clonic or focal seizures with impaired awareness. The presence of reflex seizures is one of the most representative clinical manifestations related to SYN1. In more than half of the cases, seizures are triggered by contact with water, but other triggers are also frequently reported, including rubbing with a towel, fever, toothbrushing, fingernail clipping, falling asleep, and watching others showering or bathing. We additionally describe hyperpnea, emotion, lighting, using a stroboscope, digestive troubles, and defecation as possible triggers in individuals with SYN1 variants. The molecular spectrum of SYN1 variants is broad and encompasses truncating variants (frameshift, nonsense, splicing and start-loss variants) as well as non-truncating variants (missense substitutions and in-frame duplications). Genotype-phenotype correlation revealed that epileptic phenotypes are enriched in individuals with truncating variants. Furthermore, we could show for the first time that individuals with early seizures onset tend to present with severe-to-profound intellectual disability, hence highlighting the existence of an association between early seizure onset and more severe impairment of cognitive functions. Altogether, we present a detailed clinical description of the largest series of individuals with SYN1 variants reported so far and provide the first genotype-phenotype correlations for this gene. A timely molecular diagnosis and genetic counseling are cardinal for appropriate patient management and treatment.
RESUMEN
An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.
Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Femenino , Humanos , Masculino , Trastorno Autístico/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Hipotonía Muscular/genética , Hipotonía Muscular/complicaciones , Fenotipo , Síndrome , Factores de Transcripción/genéticaRESUMEN
OBJECTIVE: Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD: We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS: Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION: This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.
Asunto(s)
Proteínas de Unión al Calcio/análisis , Trastornos de los Cromosomas/complicaciones , Proteínas de la Membrana/análisis , Adulto , Proteínas de Unión al Calcio/genética , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 6/genética , Femenino , Humanos , Proteínas de la Membrana/genética , Fenotipo , Embarazo , Estudios Retrospectivos , Trisomía/genética , Virulencia/genética , Virulencia/fisiologíaRESUMEN
Transcriptor co-activator factor 20 gene (TCF20) encodes a nuclear chromatin-binding protein involved in regulation of gene expression. In human pathology, pathogenic variants or deletions in TCF20 were identified in patients with developmental delay, variable intellectual disability and behavioral impairment (OMIM: 618430). The shared core phenotype includes developmental delay, hypotonia, motor delay, autism spectrum disorders, neurobehavioral anomalies, neurological features such as ataxia, seizures, movement disorders, structural brain anomalies, craniofacial features and various congenital anomalies. Most pathogenic variants are loss-of-function variants. Duplication including TCF20 was suspected to cause a neurodevelopmental disorder (NDD) with mirror traits compared to patients with TCF20 deletions. In the present study, we report three patients from three unrelated families with NDD with a de novo duplication at 22q13.2 encompassing TCF20. We propose that the TCF20 duplication could be involved in a new 22q13.2 microduplication syndrome with high penetrance, enlarging the genotype-phenotype knowledge of TCF20-associated NDDs.
Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Penetrancia , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Autism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families. Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early intervention.
RESUMEN
Ephrin receptor and their ligands, the ephrins, are widely expressed in the developing brain. They are implicated in several developmental processes that are crucial for brain development. Deletions in genes encoding for members of the Eph/ephrin receptor family were reported in several neurodevelopmental disorders. The ephrin receptor A7 gene (EPHA7) encodes a member of ephrin receptor subfamily of the protein-tyrosine kinase family. EPHA7 plays a role in corticogenesis processes, determines brain size and shape, and is involved in development of the central nervous system. One patient only was reported so far with a de novo deletion encompassing EPHA7 in 6q16.1. We report 12 additional patients from nine unrelated pedigrees with similar deletions. The deletions were inherited in nine out of 12 patients, suggesting variable expressivity and incomplete penetrance. Four patients had tiny deletions involving only EPHA7, suggesting a critical role of EPHA7 in a neurodevelopmental disability phenotype. We provide further evidence for EPHA7 deletion as a risk factor for neurodevelopmental disorder and delineate its clinical phenotype.
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Receptor EphA7/genética , Cromosomas Humanos Par 6 , Hibridación Genómica Comparativa , Femenino , Estudios de Asociación Genética/métodos , Humanos , Hibridación Fluorescente in Situ , Patrón de Herencia , Masculino , Mutación , Linaje , Secuenciación del ExomaRESUMEN
The genetics of neurodevelopmental disorders (NDD) has made tremendous progress during the last few decades with the identification of more than 1,500 genes associated with conditions such as intellectual disability and autism. The functional roles of these genes are currently studied to uncover the biological mechanisms influencing the clinical outcome of the mutation carriers. To integrate the data, several databases and curated gene lists have been generated. Here, we provide an overview of the main databases focusing on the genetics of NDD, that are widely used by the medical and scientific communities, and extract a list of high confidence NDD genes (HC-NDD). This gene set can be used as a first filter for interpreting large scale omics dataset or for diagnostic purposes. Overall HC-NDD genes (N = 1,586) are expressed at very early stages of fetal brain development and enriched in several biological pathways such as chromosome organization, cell cycle, metabolism and synaptic function. Among those HC-NDD genes, 204 (12,9%) are listed in the synaptic gene ontology SynGO and are enriched in genes expressed after birth in the cerebellum and the cortex of the human brain. Finally, we point at several limitations regarding the relatively poor standardized information available, especially on the carriers of the mutations. Progress on the phenotypic characterization and genetic profiling of the carriers will be crucial to improve our knowledge on the biological mechanisms and on risk and protective factors for NDD.
Asunto(s)
Trastorno Autístico/genética , Bases de Datos Genéticas , Discapacidades del Desarrollo/genética , Trastorno Autístico/metabolismo , Discapacidades del Desarrollo/metabolismo , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Mapas de Interacción de ProteínasRESUMEN
Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a â¼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.
Asunto(s)
Trastorno del Espectro Autista/genética , Haploinsuficiencia/genética , Histona Desacetilasas/metabolismo , Discapacidad Intelectual/genética , Proteínas Represoras/genética , Acetilación , Adolescente , Animales , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Femenino , Histonas/química , Histonas/metabolismo , Humanos , Lactante , Larva/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo , Síndrome , Adulto Joven , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genéticaRESUMEN
The BCAP31 gene, located at Xq28, encodes BAP31, which plays a role in ER-to-Golgi anterograde transport. To date, BCAP31 pathogenic variants have been reported in 12 male cases from seven families (six loss of function (LoF) and one missense). Patients had severe intellectual disability (ID), dystonia, deafness, and central hypomyelination, delineating a so-called deafness, dystonia and cerebral hypomyelination syndrome (DDCH). Female carriers are mostly asymptomatic but may present with deafness. BCAP31 is flanked by the SLC6A8 and ABCD1 genes. Contiguous deletions of BCAP31 and ABCD1 and/or SLC6A8 have been described in 12 patients. Patients with deletions including BCAP31 and SLC6A8 have the same phenotype as BCAP31 patients. Patients with deletions of BCAP31 and ABCD1 have contiguous ABCD1 and DXS1375E/BCAP31 deletion syndrome (CADDS), and demonstrate a more severe neurological phenotype with cholestatic liver disease and early death. We report 17 novel families, 14 with intragenic BCAP31 variants (LoF and missense) and three with a deletion of BCAP31 and adjacent genes (comprising two CADDS patients, one male and one symptomatic female). Our study confirms the phenotype reported in males with intragenic LoF variants and shows that males with missense variants exhibit a milder phenotype. Most patients with a LoF pathogenic BCAP31 variant have permanent or transient liver enzyme elevation. We further demonstrate that carrier females (n = 10) may have a phenotype comprising LD, ID, and/or deafness. The male with CADDS had a severe neurological phenotype, but no cholestatic liver disease, and the symptomatic female had moderate ID and cholestatic liver disease.
Asunto(s)
Sordera/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , Proteínas de la Membrana/genética , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Sordera/patología , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Mutación Missense , Linaje , SíndromeRESUMEN
Hypomagnesemia, seizures, and intellectual disability (HSMR) syndrome is a rare disorder caused by mutations in the cyclin M2 (CNNM2) gene. Due to the limited number of cases, extensive phenotype analyses of these patients have not been performed, hindering early recognition of patients. In this study, we established the largest cohort of HSMR to date, aiming to improve recognition and diagnosis of this complex disorder. Eleven novel variants in CNNM2 were identified in nine single sporadic cases and in two families with suspected HSMR syndrome. 25 Mg2+ uptake assays demonstrated loss-of-function in seven out of nine variants in CNNM2. Interestingly, the pathogenic mutations resulted in decreased plasma membrane expression. The phenotype of those affected by pathogenic CNNM2 mutations was compared with five previously reported cases of HSMR. All patients suffered from hypomagnesemia (0.44-0.72 mmol/L), which could not be fully corrected by Mg2+ supplementation. The majority of patients (77%) experienced generalized seizures and exhibited mild to moderate intellectual disability and speech delay. Moreover, severe obesity was present in most patients (89%). Our data establish hypomagnesemia, seizures, intellectual disability, and obesity as hallmarks of HSMR syndrome. The assessment of these major features offers a straightforward tool for the clinical diagnosis of HSMR.
Asunto(s)
Proteínas de Transporte de Catión , Discapacidad Intelectual , Proteínas de Transporte de Catión/genética , Ciclinas/genética , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación , FenotipoRESUMEN
Hirschsprung disease (HSCR) is the most frequent developmental anomaly of the enteric nervous system, with an incidence of 1 in 5000 live births. Chronic intestinal pseudo-obstruction (CIPO) is less frequent and classified as neurogenic or myogenic. Isolated HSCR has an oligogenic inheritance with RET as the major disease-causing gene, while CIPO is genetically heterogeneous, caused by mutations in smooth muscle-specific genes. Here, we describe a series of patients with developmental disorders including gastrointestinal dysmotility, and investigate the underlying molecular bases. Trio-exome sequencing led to the identification of biallelic variants in ERBB3 and ERBB2 in 8 individuals variably associating HSCR, CIPO, peripheral neuropathy, and arthrogryposis. Thorough gut histology revealed aganglionosis, hypoganglionosis, and intestinal smooth muscle abnormalities. The cell type-specific ErbB3 and ErbB2 function was further analyzed in mouse single-cell RNA sequencing data and in a conditional ErbB3-deficient mouse model, revealing a primary role for ERBB3 in enteric progenitors. The consequences of the identified variants were evaluated using quantitative real-time PCR (RT-qPCR) on patient-derived fibroblasts or immunoblot assays on Neuro-2a cells overexpressing WT or mutant proteins, revealing either decreased expression or altered phosphorylation of the mutant receptors. Our results demonstrate that dysregulation of ERBB3 or ERBB2 leads to a broad spectrum of developmental anomalies, including intestinal dysmotility.
Asunto(s)
Discapacidades del Desarrollo/genética , Seudoobstrucción Intestinal/genética , Mutación , Neurregulina-1/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Adolescente , Animales , Preescolar , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Femenino , Motilidad Gastrointestinal/genética , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/patología , Humanos , Recién Nacido , Seudoobstrucción Intestinal/patología , Masculino , Ratones , Modelos Moleculares , Linaje , Fenotipo , Embarazo , Receptor ErbB-2/química , Receptor ErbB-3/química , Receptor ErbB-3/deficienciaRESUMEN
OBJECTIVE: To test the hypothesis that telomere shortening and/or loss are risk factors for infertility. DESIGN: Retrospective analysis of the telomere status in patients with infertility using conventional cytogenetic data collected prospectively. SETTING: Academic centers. PATIENT(S): Cytogenetic slides with cultured peripheral lymphocytes from 50 patients undergoing fertility treatment and 150 healthy donors, including 100 donors matched for age. INTERVENTION(S): Cytogenetic slides were used to detect chromosomal and telomere aberrations. MAIN OUTCOME MEASURE(S): Telomere length and telomere aberrations were analyzed after telomere and centromere staining. RESULT(S): The mean telomere length of patients consulting for infertility was significantly less than that of healthy donors of similar age. Moreover, patients with infertility showed significantly more extreme telomere loss and telomere doublet formation than healthy controls. Telomere shortening and/or telomere aberrations were more pronounced in patients with structural chromosomal aberrations. Dicentric chromosomes were identified in 6/13 patients, with constitutional chromosomal aberrations leading to chromosomal instability that correlated with chromosomal end-to-end fusions. CONCLUSION(S): Our findings demonstrate the feasibility of analyzing telomere aberrations in addition to chromosomal aberrations, using cytogenetic slides. Telomere attrition and/or dysfunction represent the main common cytogenetic characteristic of patients with infertility, leading to potential implications for fertility assessment. Pending further studies, these techniques that correlate the outcome of assisted reproduction and telomere integrity status may represent a novel and useful diagnostic and/or prognostic tool for medical care in this field.