RESUMEN
Cyclodepsipeptides (CDPs) represent a huge family of chemically and structurally diverse molecules with a wide ability for molecular interactions. CDPs are cyclic peptide-related natural products made up of both proteinogenic and nonproteinogenic amino acids linked by amide and ester bonds. The combined use of different analytical methods is required to accurately determine their integral structures including stereochemistry, thus allowing deeper insights into their often-intriguing bioactivities and their possible usefulness. Our goal is to present the various methods developed to accurately characterize CDPs. Presently, Marfey's method and NMR (nuclear magnetic resonance) are still considered the best for characterizing CDP configuration. Nevertheless, electrospray-high resolution tandem mass spectrometry (ESI-HRMS/MS) is of great value for efficiently resolving CDP's composition and sequences. For instance, recent data shows that the fragmentation of cationized CDPs (e.g., [M + Li]+ and [M + Na]+) leads to selective cleavage of ester bonds and specific cationized product ions (b series) useful to get unprecedented sequence information. Thus, after a brief presentation of their structure, biological functions, and biosynthesis, we also provide a historic overview of these various analytical approaches as well as their advantages and limitations with a special emphasis on the emergence of methods based on HRMS/MS through recent fundamental works and applications.
RESUMEN
Bacillus cereus is responsible for foodborne outbreaks worldwide. Among the produced toxins, cereulide induces nausea and vomiting after 30 min to 6 h following the consumption of contaminated foods. Cereulide, a cyclodepsipeptide, is an ionophore selective to K+ in solution. In electrospray, the selectivity is reduced as [M + Li]+; [M + Na]+ and [M + NH4]+ can also be detected without adding corresponding salts. Two forms are possible for alkali-cationized ions: charge-solvated (CS) that exclusively dissociates by releasing a bare alkali ion and protonated salt (PS), yielding alkali product ions by covalent bond cleavages (CBC) promoted by mobile proton. Based on a modified peptide cleavage nomenclature, the PS product ion series (b, a, [b + H2O] and [b + CnH2nO] [n = 4, 5]) are produced by Na+/Li+/K+-cationized cereulide species that specifically open at ester linkages followed by proton mobilization promoting competitive ester CBC as evidenced under resonant collision activation. What is more, unlike the sodiated or lithiated cereulide, which regenerates little or no alkali cation, the potassiated forms lead to an abundant K+ regeneration. This occurs by splitting of (i) the potassiated CS forms with an appearance threshold close to that of the PS first fragment ion generation and (ii) eight to four potassiated residue product ions from the PS forms. Since from Na+/Li+-cationized cereulide, (i) the negligible Na+/Li+ regeneration results in a higher sensibility than that of potassiated forms that abundantly releasing K+, and (ii) a better sequence recovering, the use of Na+ (or Li+) should be more pertinent to sequence isocereulides and other cyclodepsipeptides.
Asunto(s)
Cationes , Depsipéptidos , Protones , Espectrometría de Masa por Ionización de Electrospray , Depsipéptidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Cationes/química , Álcalis/química , Bacillus cereus/química , Sales (Química)/químicaRESUMEN
In untargeted metabolomics, the unambiguous identification of metabolites remains a major challenge. This requires high-quality spectral libraries for reliable metabolite identification, which is essential for translating metabolomics data into meaningful biological information. Several attempts have been made to generate reproducible product ion spectra (PIS) under a low collision energy (ELab) regime and nonresonant collisional conditions but have not fully succeeded. We examined the ERMS (energy-resolved mass spectrometry) breakdown curves of two lipo-amino acids and showed the possibility to highlight "singular points", called descriptors hereafter (linked to respective ELab depending on the instrument), for each of the monomodal product ion profiles. Using several instruments based on different technologies, the PIS recorded at these specific ELab sites shows remarkable similarities. The descriptors appeared as being independent of the fragmentation mechanisms and can be used to overcome the main instrumental effects that limit the interoperability of spectral libraries. This proof-of-concept study, performed on two particular lipo-amino acids, demonstrates the high potential of ERMS-derived information to determine the instrument-specific ELab at which PIS recorded in nonresonant conditions become highly similar and instrument-independent, thus comparable across platforms. This innovative but straightforward approach could help remove some of the obstacles to metabolite identification in nontargeted metabolomics, putting an end to a challenging chimera.
Asunto(s)
Espectrometría de Masas , Metabolómica , Metabolómica/métodos , Espectrometría de Masas/métodos , Aminoácidos/análisis , Aminoácidos/química , Aminoácidos/metabolismoRESUMEN
Formation of noncovalent complexes is one of the approaches to perform chiral analysis with mass spectrometry. Enantiomeric distinction of amino acids (AAs) based on the relative rate constants of competitive fragmentations of quaternary copper complexes is an efficient method for chiral differentiation. Here, we studied the complex [CuII,(Phe,PhG,Pro-H)]+ (m/z 493) under resonant collision-induced dissociation conditions while varying the activation time. The precursor ion can yield two main fragments through the loss of the non-natural AA phenylglycine (PhG): the expected product ion [CuII,(Phe,Pro-H)]+ (m/z 342) and the reduced product ion [CuI,(Phe,Pro)]+ (m/z 343). Enantioselective reduction describes the difference in relative abundance of these ions, which depends on the chirality of the precursor ion: the formation of the reduced ion m/z 343 is favored in homochiral complexes (DDD) compared to heterochiral complexes (such as LDD). Energy-resolved mass spectrometry data show that reduction, which arises from rearrangement, is favored at a low collision energy (CE) and long activation time (ActT), whereas direct cleavage preferentially occurs at a high CE and short ActT. These results were confirmed with kinetic modeling based on RRKM theory. For this modeling, it was necessary to set a pre-exponential factor as a reference, so that the E0 values obtained are relative values. Interestingly, these simulations showed that the critical energy E0 required to form the reduced ion is comparable in both homochiral and heterochiral complexes. However, the formation of product ion m/z 342 through direct cleavage is associated with a lower E0 in heterochiral complexes. Consequently, enantioselectivity would not be caused by enhanced reduction in homochiral complexes but rather by direct cleavage being favored in heterochiral complexes.
RESUMEN
Identification of lipopeptides (LpAA) synthesized from bacteria involves the study of structural characterization. Twenty LpAA have been characterized using commercial tandem high-resolution mass spectrometers in negative electrospray, employing nonresonant excitation in "RF only" collision cells and generally behave identically. However, [LpAA-H]- (AA = Asp or Glu) shows surprising fragmentation pathways, yielding a complementary fatty acid carboxylate and dehydrated amino acid fragment anions. In this study, the dissociation mechanisms of [C12Glu-H]- were determinate using energy-resolved mass spectrometry (ERMS). Product ion breakdown profiles are, generally, unimodal with full width at half-maximum (fwhm) increasing as product ion m/z ratios decrease, except for the two product ions of interest (fatty acid carboxylate and dehydrated glutamate) characterized by broad and composite profiles. Such behavior was already shown for other ions using a custom-built guided ion beam mass spectrometer. In this study, we investigate the meaning of these particular profiles from an ERMS breakdown, using fragmentation mechanisms depending on the collision energy. ERMS on line with ion mobility spectrometry (IMS), here called ER-IMS, provides a way to probe such questions. Broad or composite profiles imply that the corresponding product ions may be generated by two (or more) pathways, resulting in common or isomeric product ion structures. ER-IMS analysis indicates that the fatty acid carboxylate product ion is produced with a common structure through different pathways, while dehydrated glutamate has two isomeric forms depending on the mechanism involved. Drift time values correlate with the calculated collision cross section that confirms the product ion structures and fragmentation mechanisms.
Asunto(s)
Ácido Glutámico , Espectrometría de Movilidad Iónica , Iones/química , Espectrometría de Masas/métodos , Isomerismo , Espectrometría de Masa por Ionización de Electrospray/métodosRESUMEN
The combined use of hydrogen/deuterium exchange (HDX) and mass spectrometry (MS), referred to as HDX-MS, is a powerful tool for exploring molecular edifices and has been used for over 60 years. Initially for structural and mechanistic investigation of low-molecular weight organic compounds, then to study protein structure and dynamics, then, the craze to study small molecules by HDX-MS accelerated and has not stopped yet. The purpose of this review is to present its different facets with particular emphasis on recent developments and applications. Reversible H/D exchanges of mobilizable protons as well as stable exchanges of non-labile hydrogen are considered whether they are taking place in solution or in the gas phase, or enzymatically in a biological media. Some fundamental principles are restated, especially for gas-phase processes, and an overview of recent applications, ranging from identification to quantification through the study of metabolic pathways, is given.
Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Deuterio , Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Hidrógeno/químicaRESUMEN
INTRODUCTION: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories. OBJECTIVES: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management. METHODS: We developed the PeakForest infrastructure, an open-source Java tool with automatic programming interfaces that can be deployed locally to organize spectral data for metabolome annotation in laboratories. Standardized operating procedures and formats were included to ensure data quality and interoperability, in line with international recommendations and FAIR principles. RESULTS: PeakForest is able to capture and store experimental spectral MS and NMR metadata as well as collect and display signal annotations. This modular system provides a structured database with inbuilt tools to curate information, browse and reuse spectral information in data treatment. PeakForest offers data formalization and centralization at the laboratory level, facilitating shared spectral data across laboratories and integration into public databases. CONCLUSION: PeakForest is a comprehensive resource which addresses a technical bottleneck, namely large-scale spectral data annotation and metabolite identification for metabolomics laboratories with multiple instruments. PeakForest databases can be used in conjunction with bespoke data analysis pipelines in the Galaxy environment, offering the opportunity to meet the evolving needs of metabolomics research. Developed and tested by the French metabolomics community, PeakForest is freely-available at https://github.com/peakforest .
Asunto(s)
Metabolómica , Metadatos , Curaduría de Datos/métodos , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodosRESUMEN
BACKGROUND: Progressive implementation of the milestone competence-based curriculum has created a need for new objective and validated means to assess resident surgical proficiency. A previous systematic review of the literature by our group has highlighted a shortage of tools assessing surgical competence in oncologic procedures in otolaryngology - head and neck surgery. METHODS: We developed a procedure-specific assessment tool for neck dissection using a modified Delphi method. The 2-part design was modelled on the previously validated Objective Structured Assessment of Technical Skills checklist. The tool was then validated through a 1-year multicentric prospective study in collaboration with the residents and faculty from our academic centre. Additionally, we developed an online survey to assess the acceptability by residents and staff before and after the validation studies. RESULTS: A total of 29 evaluations were completed throughout the 2016-2017 academic year. Acceptability ranked high for both residents and staff, with a single discrepancy in responses regarding a potential formative as opposed to summative use of the tool. Validation study results showed significantly higher checklist scores among senior residents than junior residents, as well as a significant score progression over time (p < 0.05). Trends in scores on the task-specific tool correlated highly to results obtained on a validated global rating scale (p < 0.05). CONCLUSION: The first tool assessing surgical competence in oncologic otolaryngology - head and neck surgery has been developed and shows promising validity.
Asunto(s)
Internado y Residencia , Competencia Clínica , Humanos , Disección del Cuello , Proyectos Piloto , Estudios ProspectivosRESUMEN
Improving knowledge about metabolites produced by the microbiota is a key point to understand its role in human health and disease. Among them, lipoamino acid (LpAA) containing asparagine and their derivatives are bacterial metabolites which could have an impact on the host. In this study, our aim was to extend the characterization of this family. We developed a semi-targeted workflow to identify and quantify new candidates. First, the sample preparation and analytical conditions using liquid chromatography (LC) coupled to high resolution mass spectrometry (HRMS) were optimized. Using a theoretical homemade database, HRMS raw data were manually queried. This strategy allowed us to find 25 new LpAA conjugated to Asn, Gln, Asp, Glu, His, Leu, Ile, Lys, Phe, Trp and Val amino acids. These metabolites were then fully characterized by MS2, and compared to the pure synthesized standards to validate annotation. Finally, a quantitative method was developed by LC coupled to a triple quadrupole instrument, and linearity and limit of quantification were determined. 14 new LpAA were quantified in gram positive bacteria, Lactobacilus animalis, and 12 LpAA in Escherichia coli strain Nissle 1917.
Asunto(s)
Escherichia coli , Fragmentos de Péptidos , Secuencia de Aminoácidos , Humanos , Espectrometría de Masas , TripsinaRESUMEN
The identification of bacterial metabolites produced by the microbiota is a key point to understand its role in human health. Among them, lipo-amino acids (LpAA), which are able to cross the epithelial barrier and to act on the host, are poorly identified. Structural elucidation of few of them was performed by high-resolution tandem mass spectrometry based on electrospray combined with selective ion dissociations reach by collision-induced dissociation (CID). The negative ions were used for their advantages of yielding only few fragment ions sufficient to specify each part of LpAA with sensitivity. To find specific processes that help structural assignment, the negative ion dissociations have been scrutinized for an LpAA: the N-palmitoyl acyl group linked to glutamic acid (C16Glu). The singular behavior of [C16Glu-H]¯ towards CID showed tenth product ions, eight were described by expected fragment ions. In contrast, instead of the expected product ions due to CONH-CH bond cleavage, an abundant complementary dehydrated glutamic acid and fatty acid anion pair were observed. Specific to glutamic moiety, they were formed by a stepwise dissociation via molecular isomerization through ion-dipole formation prior to dissociation. This complex dissociated by partner splitting either directly or after inter-partner proton transfer. By this pathway, surprising regeneration of deprotonated fatty acid takes place. Such regeneration is comparable to that occurred from dissociation to peptides containing acid amino-acid. Modeling allow to confirm the proposed mechanisms explaining the unexpected behavior of this glutamate conjugate.
Asunto(s)
Ácido Glutámico , Espectrometría de Masa por Ionización de Electrospray , Aminoácidos , Aniones , Ácidos Grasos , Ácido Glutámico/química , Humanos , Regeneración , Espectrometría de Masa por Ionización de Electrospray/métodosRESUMEN
We investigated the product ion spectra of [M + Na]+ from diterpene diester species and low molecular mass metabolites analyzed by electrospray ionization (ESI). Mainly, the formation of protonated salt structures was proposed to explain the observed neutral losses of carboxylic acids. It also facilitates understanding sodium retention on product ions or on neutral losses. In addition, the occurrence of consecutive carboxylic acid losses is rather unexpected under resonant excitation conditions. Quantum calculation demonstrated that the exothermic character of such neutral losses can represent a relevant explanation. There is no doubt that the formation and role of the protonated salt structures will be helpful for a better understanding and software-assisted interpretation of tandem mass spectra from small molecules, especially in the ever-growing metabolomics field.
Asunto(s)
Diterpenos/análisis , Diterpenos/química , Sodio/química , Espectrometría de Masas en Tándem/métodos , MetabolómicaRESUMEN
BACKGROUND: The objective was to develop an assessment tool to evaluate residents' competency for neck dissection and provide preliminary evidence of feasibility, reliability, and validity. METHODS: Six surgeons developed a neck dissection assessment tool using a modified Delphi method and evaluated 58 neck dissections from six junior and six senior otolaryngology residents. RESULTS: The assessment tool uses a double checklist: a previously validated global rating scale (GRS) and a task-specific checklist (TSC). Use of the instrument appeared feasible and the average scores on the GRS and TSC differed significantly between junior and senior residents. The Pearson correlation coefficient between both checklists was 0.87. Intraclass correlation (ICC) for inter-rater reliability was 0.69 for the GRS, and 0.80 for the TSC. CONCLUSION: This study provides preliminary evidence of feasibility, reliability, and validity for the first neck dissection assessment tool and provides a foundation for further psychometric analysis and research.
Asunto(s)
Internado y Residencia , Disección del Cuello , Lista de Verificación , Competencia Clínica , Humanos , Reproducibilidad de los ResultadosRESUMEN
Mass spectrometric investigations of noncovalent binding between low molecular weight compounds revealed the existence of gas-phase (GP) noncovalent complex (NCC) ions involving zwitterionic structures. ESI MS is used to prove the formation of stable sodiated NCC anions between fructose (F6P) and arginine (R) moieties. Theoretical calculations indicate a folded solvated salt (i.e., sodiated carboxylate interacting with phosphate) rather than a charge-solvated form. Under standard CID conditions, [(F6P+R-H+Na)-H]- competitively forms two major product ions (PIs) through partner splitting [(R-H+Na) loss] and charge-induced cross-ring cleavage while preserving the noncovalent interactions (noncovalent product ions (NCPIs)). MS/MS experiments combined with in-solution proton/deuteron exchanges (HDXs) demonstrated an unexpected labeling of PIs, i.e., a correlated D-enrichment/D-depletion. An increase in activation time up to 3000 ms favors such processes when limited to two H/D exchanges. These results are rationalized by interpartner hydride/deuteride exchanges (⟨HDX⟩) through stepwise isomerization/dissociation of sodiated NCC-d11 anions. In addition, the D-enrichment/D-depletion discrepancy is further explained by back HDX with residual water in LTQ (selective for the isotopologue NCPIs as shown by PI relaxation experiments). Each isotopologue leads to only one back HDX unlike multiple HDXs generally observed in GP. This behavior shows that NCPIs are zwitterions with charges solvated by a single water molecule, thus generating a back HDX through a relay mechanism, which quenches the charges and prevents further back HDX. By estimating back HDX impact on D-depletion, the interpartner ⟨HDX⟩ complementarity was thus illustrated. This is the first description of interpartner ⟨HDX⟩ and selective back HDX validating salt-solvated structures.
RESUMEN
The paper briefly presents goals, activities, challenges, and outcomes of the NETCHEM project ( http://www.netchem.ac.rs/ ) that was co-funded by the Erasmus+ Program of European Union (573885-EPP-1-2016-1-RS-EPPKA2- CBHE-JP). The project has been started in October 2016 and with extension lasted until April 2020. Western Balkan region has been targeted by upgrading capacities for education and research in environmental and food analysis in cooperation with partners from France, the UK, and Czech Republic. NETCHEM platform providing Web Accessed Remote Instrumental Analytical Laboratories (WARIAL) network, Database service and Open education system was created in order to improve the cooperation, educational, and research capacities of Higher Education Institutions involved, but also targeting whether audience not only from academic domain but from industry as well. The NETCHEM platform is free for access to public; thus, the external users to NETCHEM consortium can not only see its content but also actively participate, enter Database and WARIAL network, and upload their own educational/research material.
Asunto(s)
Universidades , República Checa , Unión Europea , FranciaRESUMEN
A low-cost synthetic 2-cyano-3-(2-thienyl)acrylic acid (CTA) is developed as a new MALDI matrix for the analysis of various classes of compounds such as lipids (e.g., fatty acids), peptides, proteins, saccharides, natural products (i.e., iridoids), PEGs, and organometallics in the positive-ion mode. The difficulty in the analysis of high molecular mass PEGs was overcome by using CTA as matrix even at low concentrations. Both high molecular mass proteins and peptides were successfully analyzed using CTA. The mass spectra of all of the studied analytes with CTA showed high signal-to-noise (S/N) ratios and spectral resolutions when compared to other conventional matrices such as SA, DHB, DT, and HCCA. However, in the case of peptide analysis with CTA, the resulting mass spectra are found to be similar to that of the well-established HCCA matrix. On the basis of the physicochemical properties of the analytes, the CTA works as a proton/cation or electron-transfer matrix. It proves that the CTA can be used as a common matrix for the analysis of majority classes of analytes instead of using a specific matrix for the particular class of analytes. Further, the CTA provides an advantage in the analysis of unknown samples as it rules out ambiguity in the selection of particular matrix and it may also offer a complete profile of the tissue surface in the MALDI-imaging experiments.
RESUMEN
Graphene-based nanoparticles are continuously being developed for biomedical applications, and their use raises concerns about their environmental and biological impact. In the literature, some imaging techniques based on fluorescence and radioimaging have been used to explore their fate in vivo. Here, we report on the use of label-free mass spectrometry and mass spectrometry imaging (MSI) for graphene oxide (GO) and reduced graphene oxide (rGO) analyses in rodent tissues. Thereby, we extend previous work by focusing on practical questions to obtain reliable and meaningful images. Specific radical anionic carbon clusters ranging from C2-⢠to C9-⢠were observed for both GO and rGO species, with a base peak at m/z 72 under negative laser desorption ionization mass spectrometry (LDI-MS) conditions. Extension to an LDI-MSI method was then performed, thus enabling the efficient detection of GO nanoparticles in lung tissue sections of previously exposed mice. The possibility of quantifying those nanoparticles on tissue sections has also been investigated. Two different ways of building calibration curves (i.e., GO suspensions spotted on tissue sections, or added to lung tissue homogenates) were evaluated and returned similar results, with linear dynamic concentration ranges over at least 2 orders of magnitude. Moreover, intra- and inter-day precision studies have been assessed, with relative standard deviation below 25% for each concentration point of a calibration curve. In conclusion, our study confirms that LDI-MSI is a relevant approach for biodistribution studies of carbon-based nanoparticles, as quantification can be achieved, provided that nanoparticle suspension and manufacturing are carefully controlled.
Asunto(s)
Grafito/análisis , Hígado/química , Pulmón/química , Nanopartículas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Femenino , Grafito/administración & dosificación , Ratones , Ratones Endogámicos BALB CRESUMEN
The secondary metabolome of Penicillium nordicum is poorly documented despite its frequent detection on contaminated food and its capacity to produce toxic metabolites such as ochratoxin A. To characterize metabolites produced by this fungi, we combined a full stable isotopes labeling with the dereplication of tandem mass spectrometry (MS/MS) data by molecular networking. First, the untargeted metabolomic analysis by high-resolution mass spectrometry of a double stable isotope labeling of P. nordicum enabled the specific detection of its metabolites and the unambiguous determination of their elemental composition. Analyses showed that infection of substrate by P. nordicum lead to the production of at least 92 metabolites and that 69 of them were completely unknown. Then, curated molecular networks of MS/MS data were generated with GNPS and MetGem, specifically on the features of interest, which allowed highlighting 13 fungisporin-related metabolites that had not previously been identified in this fungus and 8 that had never been observed in any fungus. The structures of the unknown compounds, namely, a native fungisporin and seven linear peptides, were characterized by tandem mass spectrometry experiments. The analysis of P. nordicum growing on its natural substrates, i.e. pork ham, turkey ham, and cheese, demonstrated that 10 of the known fungisporin-related metabolites and three of the new metabolites were also synthesized. Thus, the curation of data for molecular networking using a specific detection of metabolites of interest with stable isotopes labeling allowed the discovery of new metabolites produced by the food contaminant P. nordicum.
Asunto(s)
Penicillium/metabolismo , Espectrometría de Masas en Tándem/métodos , Isótopos de Carbono , Queso/microbiología , Microbiología de Alimentos , Marcaje Isotópico/métodos , Estructura Molecular , Isótopos de Nitrógeno , Carne de Cerdo/microbiología , Metabolismo SecundarioRESUMEN
Nowadays, high-resolution mass spectrometry is widely used for metabolomic studies. Thanks to its high sensitivity, it enables the detection of a large range of metabolites. In metabolomics, the continuous quest for a metabolite identification as complete and accurate as possible has led during the last decade to an ever increasing development of public MS databases (including LC-MS data) concomitantly with bioinformatic tool expansion. To facilitate the annotation process of MS profiles obtained from biological samples, but also to ease data sharing, exchange, and exploitation, the standardization and harmonization of the way to describe and annotate mass spectra seemed crucial to us. Indeed, under electrospray (ESI) conditions, a single metabolite does not produce a unique ion corresponding to its protonated or deprotonated form but could lead to a complex mixture of signals. These MS signals result from the existence of different natural isotopologues of the same compound and also to the potential formation of adduct ions, homomultimeric and heteromultimeric ions, fragment ions resulting from "prompt" in-source dissociations. As a joint reflection process within the French Infrastructure for Metabolomics and Fluxomics (MetaboHUB) and with the purpose of developing a robust and exchangeable annotated MS database made from pure reference compounds (chemical standards) analysis, it appeared to us that giving the metabolomics community some clues to standardize and unambiguously annotate each MS feature was a prerequisite to data entry and further efficient querying of the mass spectral database. The use of a harmonized notation is also mandatory for interlaboratory MS data exchange. Additionally, thorough description of the variety of MS signals arising from the analysis of a unique metabolite might provide greater confidence on its annotation.
Asunto(s)
Curaduría de Datos/métodos , Bases de Datos Factuales/normas , Metabolómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/métodos , Biología Computacional , Análisis de Componente Principal , Espectrometría de Masas en Tándem/métodosRESUMEN
There is an urgent need to implement holistic and untargeted doping control protocols with improved discriminatory power, compared to conventional methods that only target doping agents. Metabolomics, which aims to characterize all metabolites present in biological matrices, could fulfill this need. In this context, the aim of this study was to evaluate the impact of environmental factors on the ability to obtain a metabolic signature of stanozolol administration in horse doping situation. Urine samples from 16 horses breeded in two different places were collected over a one-year period, before, during and seven months after the administration of stanozolol, a horse doping agent. Metabolomic analysis was performed using ultra-high pressure reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (MS). Results showed a major impact of the nutritional regimen, drug administration (for de-worming purpose) and breeding place on the metabolite profiles of horse urines, which hampered the detection of metabolic perturbations induced by stanozolol administration. After having used MS/MS experiments to characterize some MS features related to these environmental factors, we showed that highlighting and then removing the features impacted by these confounding factors before performing supervised multivariate statistical analyses could address this issue. In conclusion, adequate consideration should be given to environmental and physiological factors; otherwise, they can emerge as confounding factors and conceal doping administration.
Asunto(s)
Cromatografía de Fase Inversa/métodos , Doping en los Deportes/métodos , Caballos/orina , Espectrometría de Masas/métodos , Metabolómica/métodos , Prednisolona/orina , Detección de Abuso de Sustancias/métodos , Animales , Cromatografía de Fase Inversa/veterinaria , Límite de Detección , Espectrometría de Masas/veterinaria , Detección de Abuso de Sustancias/veterinariaRESUMEN
BACKGROUND: The usefulness of fine-needle aspiration (FNA), core-needle biopsy (CNB), and frozen section (FS) for assessing lateral cystic neck masses (LCNM) remains unclear. METHODS: A retrospective review of patients presenting with a LCNM was undertaken. RESULTS: In total, 135 patients were included. FNA had a lower sensitivity then CNB (59% vs 83%; P = .036) and FS (59% vs 93%; P = .01). FS had a better negative predictive value (NPV) when compared to FNA (92% vs 40%; P < .001) and CNB (92% vs 50%; P = .062). Positive predictive values (PPV) and sensitivities were similar among all groups. CONCLUSION: Given its adequate PPV (92%), FNA should be used initially on LCNM. Because of its high sensitivity, CNB should be considered if FNA is not diagnostic of malignancy. FS should always follow a CNB indicative of malignancy, because of low NPV. A diagnosis of malignancy on FNA, CNB, or FS strongly indicates presence of malignancy.