Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114523, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39046875

RESUMEN

Extended food consumption during the rest period perturbs the phase relationship between circadian clocks in the periphery and the brain, leading to adverse health effects. Beyond the liver, how metabolic organs respond to a timed hypocaloric diet is largely unexplored. We investigated how feeding schedules impacted circadian gene expression in epididymal white and brown adipose tissue (eWAT and BAT) compared to the liver and hypothalamus. We restricted food to either daytime or nighttime in C57BL/6J male mice, with or without caloric restriction. Unlike the liver and eWAT, rhythmic clock genes in the BAT remained insensitive to feeding time, similar to the hypothalamus. We uncovered an internal split within the BAT in response to conflicting environmental cues, displaying inverted oscillations on a subset of metabolic genes without modifying its local core circadian machinery. Integrating tissue-specific responses on circadian transcriptional networks with metabolic outcomes may help elucidate the mechanism underlying the health burden of eating at unusual times.

2.
J Comp Neurol ; 532(6): e25624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38896499

RESUMEN

The hypothalamic suprachiasmatic nucleus (SCN) is the central pacemaker for mammalian circadian rhythms. As such, this ensemble of cell-autonomous neuronal oscillators with divergent periods must maintain coordinated oscillations. To investigate ultrastructural features enabling such synchronization, 805 coronal ultrathin sections of mouse SCN tissue were imaged with electron microscopy and aligned into a volumetric stack, from which selected neurons within the SCN core were reconstructed in silico. We found that clustered SCN core neurons were physically connected to each other via multiple large soma-to-soma plate-like contacts. In some cases, a sliver of a glial process was interleaved. These contacts were large, covering on average ∼21% of apposing neuronal somata. It is possible that contacts may be the electrophysiological substrate for synchronization between SCN neurons. Such plate-like contacts may explain why the synchronization of SCN neurons is maintained even when chemical synaptic transmission or electrical synaptic transmission via gap junctions is blocked. Such ephaptic contact-mediated synchronization among nearby neurons may therefore contribute to the wave-like oscillations of circadian core clock genes and calcium signals observed in the SCN.


Three­dimensional reconstruction of SCN tissue via serial electron microscopy revealed a novel structural feature of SCN neurons that may account for interneuronal synchronization that persists even when the predominant mechanisms of neuronal communication are blocked. We found that SCN core neurons are connected by multiple soma­soma contact specializations, ultrastructural elements that could enable synchronization of tightly packed neurons organized in clustered networks. This extensive network of plate­like soma­soma contacts among clustered SCN neurons may provide insight into how ∼20,000 autonomous neuronal oscillators with a broad range of intrinsic periods remain synchronized in the absence of ordinary communication modalities, thereby conferring the resilience required for the SCN to function as the mammalian circadian pacemaker.


Asunto(s)
Ratones Endogámicos C57BL , Animales , Ratones , Neuronas del Núcleo Supraquiasmático/fisiología , Masculino , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/citología , Neuronas/fisiología
3.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798622

RESUMEN

Malaria transmission begins when infected female Anopheles mosquitos deposit Plasmodium parasites into the mammalian host's skin during a bloodmeal. The salivary gland-resident sporozoite parasites migrate to the bloodstream, subsequently invading and replicating within hepatocytes. As Anopheles mosquitos are more active at night, with a 24-hour rhythm, we investigated whether their salivary glands are under circadian control, anticipating bloodmeals and modulating sporozoite biology for host encounters. Here we show that approximately half of the mosquito salivary gland transcriptome, particularly genes essential for efficient bloodmeals such as anti-blood clotting factors, exhibits circadian rhythmic expression. Furthermore, we demonstrate that mosquitoes prefer to feed during nighttime, with the amount of blood ingested varying cyclically throughout the day. Notably, we show a substantial subset of the sporozoite transcriptome cycling throughout the day. These include genes involved in parasite motility, potentially modulating the ability to initiate infection at different times of day. Thus, although sporozoites are typically considered quiescent, our results demonstrate their transcriptional activity, revealing robust daily rhythms of gene expression. Our findings suggest a circadian evolutionary relationship between the vector, parasite and mammalian host that together modulate malaria transmission.

4.
STAR Protoc ; 5(2): 102935, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38470908

RESUMEN

Food-anticipatory nose poking is a unique food-seeking behavior driven by the food-entrainable oscillator. Here, we present a protocol to record a novel food-seeking nose poking behavior in mice under temporally restricted feeding followed by food deprivation using the open-source feeding experimentation device version 3 (FED3). We describe steps for setting up the FED3 and cage, training, and habituation. We then detail procedures for setting up the schedule for time-restricted feeding and food deprivation and for generating ethograms from FED3 data. For complete details on the use and execution of this protocol, please refer to Ehichioya et al.1.


Asunto(s)
Ritmo Circadiano , Conducta Alimentaria , Animales , Ratones , Conducta Alimentaria/fisiología , Ritmo Circadiano/fisiología , Privación de Alimentos/fisiología , Masculino , Conducta Animal/fisiología
5.
Commun Biol ; 7(1): 303, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461321

RESUMEN

Animal behavior emerges from integration of many processes with different spatial and temporal scales. Dynamical behavioral patterns, including daily and ultradian rhythms and the dynamical microstructure of behavior (i.e., autocorrelations properties), can be differentially affected by external cues. Identifying these patterns is important for understanding how organisms adapt to their environment, yet unbiased methods to quantify dynamical changes over multiple temporal scales are lacking. Herein, we combine a wavelet approach with Detrended Fluctuation Analysis to identify behavioral patterns and evaluate changes over 42-days in mice subjected to different dietary restriction paradigms. We show that feeding restriction alters dynamical patterns: not only are daily rhythms modulated but also the presence, phase and/or strength of ~12h-rhythms, as well as the nature of autocorrelation properties of feed-intake and wheel running behaviors. These results highlight the underlying complexity of behavioral architecture and offer insights into the multi-scale impact of feeding habits on physiology.


Asunto(s)
Ritmo Ultradiano , Ratones , Animales , Actividad Motora/fisiología , Conducta Animal/fisiología , Ingestión de Alimentos , Agricultura
6.
PLoS Biol ; 22(3): e3002535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470868

RESUMEN

Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.


Asunto(s)
Experimentación Animal , Animales de Laboratorio , Animales , Reproducibilidad de los Resultados , Ritmo Circadiano/fisiología , Mamíferos
7.
Proc Natl Acad Sci U S A ; 121(13): e2316841121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502706

RESUMEN

We show that nocturnal aversive stimuli presented to mice while they are eating and drinking outside of their safe nest can entrain circadian behaviors, leading to a shift toward daytime activity. We also show that the canonical molecular circadian clock is necessary for fear entrainment and that an intact molecular clockwork in the suprachiasmatic nucleus, the site of the central circadian pacemaker, is necessary but not sufficient to sustain fear entrainment of circadian rhythms. Our results demonstrate that entrainment of a circadian clock by cyclic fearful stimuli can lead to severely mistimed circadian behavior that persists even after the aversive stimulus is removed. Together, our findings support the interpretation that circadian and sleep symptoms associated with fear and anxiety disorders are, in part, the output of a fear-entrained clock, and provide a mechanistic insight into this clock.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Núcleo Supraquiasmático , Ritmo Circadiano , Miedo
8.
JCI Insight ; 9(2)2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38032732

RESUMEN

Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD.


Asunto(s)
Relojes Circadianos , Enfermedad de Parkinson , Animales , Humanos , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Noqueados , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
9.
Cell Chem Biol ; 30(9): 1033-1052, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37708890

RESUMEN

Circadian rhythms are endogenous periodic biological processes that occur on a daily timescale. These rhythms are generated by a transcriptional/translational feedback loop that consists of the CLOCK-BMAL1 heterodimeric transcriptional activator complex and the PER1/2-CRY1/2-CK1δ/ε repressive complex. The output pathways of this molecular feedback loop generate circadian rhythmicity in various biological processes. Among these, metabolism is a primary regulatory target of the circadian clock which can also feedback to modulate clock function. This intertwined relationship between circadian rhythms and metabolism makes circadian clock components promising therapeutic targets. Despite this, pharmacological therapeutics that target the circadian clock are relatively rare. In this review, we hope to stimulate interest in chemical chronobiology by providing a comprehensive background on the molecular mechanism of mammalian circadian rhythms and their connection to metabolism, highlighting important studies in the chemical approach to circadian research, and offering our perspectives on future developments in the field.


Asunto(s)
Relojes Circadianos , Animales , Ritmo Circadiano , Mamíferos
10.
Sleep Health ; 9(6): 801-820, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37684151

RESUMEN

OBJECTIVE: To develop and present consensus findings of the National Sleep Foundation sleep timing and variability panel regarding the impact of sleep timing variability on health and performance. METHODS: The National Sleep Foundation assembled a panel of sleep and circadian experts to evaluate the scientific evidence and conduct a formal consensus and voting procedure. A systematic literature review was conducted using the NIH National Library of Medicine PubMed database, and panelists voted on the appropriateness of 3 questions using a modified Delphi RAND/UCLA Appropriateness Method with 2 rounds of voting. RESULTS: The literature search and panel review identified 63 full text publications to inform consensus voting. Panelists achieved consensus on each question: (1) is daily regularity in sleep timing important for (a) health or (b) performance? and (2) when sleep is of insufficient duration during the week (or work days), is catch-up sleep on weekends (or non-work days) important for health? Based on the evidence currently available, panelists agreed to an affirmative response to all 3 questions. CONCLUSIONS: Consistency of sleep onset and offset timing is important for health, safety, and performance. Nonetheless, when insufficient sleep is obtained during the week/work days, weekend/non-work day catch-up sleep may be beneficial.


Asunto(s)
Privación de Sueño , Sueño , Humanos , Consenso , Técnica Delphi
11.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712426

RESUMEN

Circadian rhythms govern glucose homeostasis, and their dysregulation leads to complex metabolic diseases. Gut microbes exhibit diurnal rhythms that influence host circadian networks and metabolic processes, yet underlying mechanisms remain elusive. Here, we showed hierarchical, bidirectional communication among the liver circadian clock, gut microbes, and glucose homeostasis in mice. To assess this relationship, we utilized mice with liver-specific deletion of the core circadian clock gene Bmal1 via Albumin-cre maintained in either conventional or germ-free housing conditions. The liver clock, but not the forebrain clock, required gut microbes to drive glucose clearance and gluconeogenesis. Liver clock dysfunctionality expanded proportions and abundances of oscillating microbial features by 2-fold relative to that in controls. The liver clock was the primary driver of differential and rhythmic hepatic expression of glucose and fatty acid metabolic pathways. Absent the liver clock, gut microbes provided secondary cues that dampened these rhythms, resulting in reduced lipid fuel utilization relative to carbohydrates. All together, the liver clock transduced signals from gut microbes that were necessary for regulating glucose and lipid metabolism and meeting energy demands over 24 hours.


Asunto(s)
Relojes Circadianos , Microbioma Gastrointestinal , Animales , Ratones , Glucosa , Metabolismo de los Lípidos , Hígado
12.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425771

RESUMEN

Nocturnal aversive stimuli presented to mice during eating and drinking outside of their safe nest can entrain circadian behaviors, leading to a shift toward daytime activity. We show that the canonical molecular circadian clock is necessary for fear entrainment and that an intact molecular clockwork in the suprachiasmatic nucleus (SCN), the site of the central circadian pacemaker, is necessary but not sufficient to sustain fear entrainment of circadian rhythms. Our results demonstrate that entrainment of a circadian clock by cyclic fearful stimuli can lead to severely mistimed circadian behavior that persists even after the aversive stimulus is removed. Together, our results support the interpretation that circadian and sleep symptoms associated with fear and anxiety disorders may represent the output of a fear-entrained clock. One-Sentence Summary: Cyclic fearful stimuli can entrain circadian rhythms in mice, and the molecular clock within the central circadian pacemaker is necessary but not sufficient for fear-entrainment.

13.
Front Neurosci ; 17: 1166137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389366

RESUMEN

The mammalian circadian system generates an approximate 24-h rhythm through a complex autoregulatory feedback loop. Four genes, Period1 (Per1), Period2 (Per2), Cryptochrome1 (Cry1), and Cryptochrome2 (Cry2), regulate the negative feedback within this loop. Although these proteins have distinct roles within the core circadian mechanism, their individual functions are poorly understood. Here, we used a tetracycline trans-activator system (tTA) to examine the role of transcriptional oscillations in Cry1 and Cry2 in the persistence of circadian activity rhythms. We demonstrate that rhythmic Cry1 expression is an important regulator of circadian period. We then define a critical period from birth to postnatal day 45 (PN45) where the level of Cry1 expression is critical for setting the endogenous free running period in the adult animal. Moreover, we show that, although rhythmic Cry1 expression is important, in animals with disrupted circadian rhythms overexpression of Cry1 is sufficient to restore normal behavioral periodicity. These findings provide new insights into the roles of the Cryptochrome proteins in circadian rhythmicity and further our understanding of the mammalian circadian clock.

14.
15.
Mult Scler J Exp Transl Clin ; 9(1): 20552173231159560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936446

RESUMEN

Background: Excessive daytime sleepiness (EDS) in multiple sclerosis (MS) can be a significant source of disability. Despite this, its prevalence as a patient-reported outcome in this condition has not been well established, and its causes are not well understood. Methods: We prospectively assessed EDS as part of an observational study for patients referred for diagnostic neuro-ophthalmological testing. EDS was evaluated by the Epworth Sleepiness Scale (ESS), and visual data were also collected as part of a research protocol. Analysis with patient data was performed following the exclusion of patients with known primary sleep disorders. Results: A total of 69 patients with MS were included in the analysis. The mean ESS was 6.5 with a SD of 4.3. ESS ≥ 10 was present in 23% of the cohort even in the presence of minimal mean neurological disability (Patient Determined Disease Steps (PDDS) = 1.5). The ESS score was not associated with age, sex, disease-related disability, retinal nerve fiber layer (RNFL), or optic neuritis (ON), but displayed an association with visual dysfunction. Conclusions: There is an increased prevalence of EDS in MS. The increased values of the ESS are not explained by other sleep disorders, suggesting separate mechanisms. Further study of the underlying mechanisms is warranted.

16.
Proc Natl Acad Sci U S A ; 119(45): e2211142119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322771

RESUMEN

Ultradian rhythms in metabolism and physiology have been described previously in mammals. However, the underlying mechanisms for these rhythms are still elusive. Here, we report the discovery of temperature-sensitive ultradian rhythms in mammalian fibroblasts that are independent of both the cell cycle and the circadian clock. The period in each culture is stable over time but varies in different cultures (ranging from 3 to 24 h). We show that transient, single-cell metabolic pulses are synchronized into stable ultradian rhythms across contacting cells in culture by gap junction-mediated coupling. Coordinated rhythms are also apparent for other metabolic and physiological measures, including plasma membrane potential (Δψp), intracellular glutamine, α-ketoglutarate, intracellular adenosine triphosphate (ATP), cytosolic pH, and intracellular calcium. Moreover, these ultradian rhythms require extracellular glutamine, several different ion channels, and the suppression of mitochondrial ATP synthase by α-ketoglutarate, which provides a key feedback mechanism. We hypothesize that cellular coupling and metabolic feedback can be used by cells to balance energy demands for survival.


Asunto(s)
Relojes Circadianos , Ritmo Ultradiano , Animales , Ácidos Cetoglutáricos , Glutamina , Ciclo Celular , Ritmo Circadiano/fisiología , Mamíferos
17.
Proc Natl Acad Sci U S A ; 119(31): e2204901119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881790

RESUMEN

Although a wide variety of genetic tools has been developed to study learning and memory, the molecular basis of memory encoding remains incompletely understood. Here, we undertook an unbiased approach to identify novel genes critical for memory encoding. From a large-scale, in vivo mutagenesis screen using contextual fear conditioning, we isolated in mice a mutant, named Clueless, with spatial learning deficits. A causative missense mutation (G434V) was found in the voltage-gated potassium channel, subfamily C member 3 (Kcnc3) gene in a region that encodes a transmembrane voltage sensor. Generation of a Kcnc3G434V CRISPR mutant mouse confirmed this mutation as the cause of the learning defects. While G434V had no effect on transcription, translation, or trafficking of the channel, electrophysiological analysis of the G434V mutant channel revealed a complete loss of voltage-gated conductance, a broadening of the action potential, and decreased neuronal firing. Together, our findings have revealed a role for Kcnc3 in learning and memory.


Asunto(s)
Hipocampo , Discapacidades para el Aprendizaje , Memoria , Mutación Missense , Canales de Potasio Shaw , Potenciales de Acción/fisiología , Animales , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/genética , Ratones , Ratones Endogámicos C57BL , Canales de Potasio Shaw/genética , Canales de Potasio Shaw/fisiología
18.
Trends Biochem Sci ; 47(9): 745-758, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35577675

RESUMEN

The circadian clock is an intracellular timekeeping device that drives daily rhythms in diverse and extensive processes throughout the body. The clock mechanism comprises a core transcription/translation negative feedback loop that is modulated by a complex set of additional interlocking feedback loops. Pharmacological manipulation of the clock may be valuable for treating many maladies including jet lag, shift work and related sleep disorders, various metabolic diseases, and cancer. We review recent identification of small-molecule clock modulators and discuss the biochemical features of the core clock that may be amenable to future drug discovery.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Descubrimiento de Drogas
19.
Science ; 376(6598): 1192-1202, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35511946

RESUMEN

Caloric restriction (CR) prolongs life span, yet the mechanisms by which it does so remain poorly understood. Under CR, mice self-impose chronic cycles of 2-hour feeding and 22-hour fasting, raising the question of if it is calories, fasting, or time of day that is the cause of this increased life span. We show here that 30% CR was sufficient to extend the life span by 10%; however, a daily fasting interval and circadian alignment of feeding acted together to extend life span by 35% in male C57BL/6J mice. These effects were independent of body weight. Aging induced widespread increases in gene expression associated with inflammation and decreases in the expression of genes encoding components of metabolic pathways in liver from ad libitum-fed mice. CR at night ameliorated these aging-related changes. Our results show that circadian interventions promote longevity and provide a perspective to further explore mechanisms of aging.


Asunto(s)
Restricción Calórica , Ritmo Circadiano , Longevidad , Animales , Regulación de la Expresión Génica , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Exp Anim ; 71(2): 240-251, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34980769

RESUMEN

Forward genetics is a powerful approach based on chromosomal mapping of phenotypes and has successfully led to the discovery of many mouse mutations in genes responsible for various phenotypes. Although crossing between genetically remote strains can produce F2 and backcross mice for chromosomal mapping, the phenotypes are often affected by background effects from the partner strains in genetic crosses. Genetic crosses between substrains might be useful in genetic mapping to avoid genetic background effects. In this study, we investigated single nucleotide polymorphisms (SNPs) available for genetic mapping using substrains of C57BL/6 and BALB/c mice. In C57BL/6 mice, 114 SNP markers were developed and assigned to locations on all chromosomes for full utilization for genetic mapping using genetic crosses between the C57BL/6J and C57BL/6N substrains. Moreover, genetic differences were identified in the 114 SNP markers among the seven C57BL/6 substrains from five production breeders. In addition, 106 SNPs were detected on all chromosomes of BALB/cAJcl and BALB/cByJJcl substrains. These SNPs could be used for genotyping in BALB/cJ, BALB/cAJcl, BALB/cAnNCrlCrlj, and BALB/cCrSlc mice, and they are particularly useful for genetic mapping using crosses between BALB/cByJJcl and other BALB/c substrains. The SNPs characterized in this study can be utilized for genetic mapping to identify the causative mutations of the phenotypes induced by N-ethyl-N-nitrosourea mutagenesis and the SNPs responsible for phenotypic differences between the substrains of C57BL/6 and BALB/c mice.


Asunto(s)
Polimorfismo de Nucleótido Simple , Animales , Cruzamientos Genéticos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA