Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioelectromagnetics ; 42(3): 224-237, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33537989

RESUMEN

For apical periodontitis treatments, a new method with the insertion of an electrode into the root canal of a tooth and application of a current at 500 kHz to sterilize the area by Joule heat has attracted attention. However, few studies have quantified the temperature increase in the root canal. This study aimed to investigate the basic characteristics of the temperature increase in a simple and standard tooth model when energizing a current at 500 kHz to the numerical tooth model with typical electrical and physical properties. We developed a numerical model of a standard tooth (dentin) and periodontal tissues consisting of an alveolar bone, cortical bone, and gingiva, and physiological saline in a root canal and calculated the temperature increase inside the numerical model by a coupled analysis of current and heat when a voltage was applied across the electrodes. The calculated results for the different applied voltages showed a temperature increase at the apical portion of the root canal, which increased with the applied voltage even for the same total supplied energy. The temperature increase occurred at the apical portion of the root canal as the tooth conductivity decreased. When the tooth conductivity was high, a current passed through the dentin, which led to a decrease in the temperature at the apical portion of the root canal. However, a chemical solution with a higher conductivity in the root canal tended to increase the temperature at the apical portion of the root canal, regardless of the tooth conductivity. More efficient approaches for increasing the spatial and temporal temperature for the tooth model target are needed. © 2021 Bioelectromagnetics Society.


Asunto(s)
Calor , Periodontitis Periapical , Conductividad Eléctrica , Humanos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA