Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Neurosci ; 13: 595, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258461

RESUMEN

Parkinson's disease (PD) and related disorders are characterized by filamentous or fibrous structures consisting of abnormal α-synuclein in the brains of patients, and the distributions and spread of these pathologies are closely correlated with disease progression. L-DOPA (a dopamine precursor) is the most effective therapy for PD, but it remains unclear whether the drug has any effect on the formation and propagation of pathogenic abnormal α-synuclein in vivo. Here, we tested whether or not L-DOPA influences the prion-like spread of α-synuclein pathologies in a wild-type (WT) mouse model of α-synuclein propagation. To quantitative the pathological α-synuclein in mice, we prepared brain sections stained with an anti-phosphoSer129 (PS129) antibody after pretreatments with autoclaving and formic acid, and carefully analyzed positive aggregates on multiple sections covering the areas of interest using a microscope. Notably, a significant reduction in the accumulation of phosphorylated α-synuclein was detected in substantia nigra of L-DOPA/benserazide (a dopamine decarboxylase inhibitor)-treated mice, compared with control mice. These results suggest that L-DOPA may slow the progression of PD in vivo by suppressing the aggregation of α-synuclein in dopaminergic neurons and the cell-to-cell propagation of abnormal α-synuclein. This is the first report describing the suppressing effect of L-DOPA/benserazide on the propagation of pathological α-synuclein. The experimental protocols and detection methods in this study are expected to be useful for evaluation of drug candidates or new therapies targeting the propagation of α-synuclein.

2.
Drug Metab Dispos ; 40(12): 2231-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22930277

RESUMEN

To understand the rate-limiting process of oral drug absorption, not only total bioavailability (F) but also intestinal (F(a) · F(g)) and hepatic (F(h)) availability after oral administration should be evaluated. Usually, F(a) · F(g) of drug is calculated from pharmacokinetic parameters after intravenous and oral administration. This approach is influenced markedly by the estimated value of F(h), which varies with the hepatic blood flow used in the calculations. In this study, portal vein-cannulated rats were used to calculate the F(a) · F(g) of drugs from a single oral dosing experiment without data from intravenous injection. Portal vein-cannulated rats were prepared by a new operative method that enables stable portal vein blood flow. This surgery had no effects on hepatic blood flow and metabolic activity. Our method for calculating F(a) · F(g) was validated by determining both portal and systemic plasma concentration profiles of various drugs possessing different pharmacokinetic properties after oral administration to the portal vein-cannulated rats. Simulation of portal and systemic plasma concentrations by physiologically based pharmacokinetic modeling indicated that the balance of the absorption rate constant (k(a)) and elimination rate constant (k(e)) resulted in different patterns in portal and systemic plasma concentration-time profiles. This study is expected to provide a new experimental animal model that enables identification of the factors that limit oral bioavailability and to provide pharmacokinetic information on the oral absorption process of drugs during drug discovery.


Asunto(s)
Absorción Intestinal/fisiología , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Farmacocinética , Vena Porta/metabolismo , Administración Oral , Animales , Antipirina/metabolismo , Disponibilidad Biológica , Cateterismo , Hígado/irrigación sanguínea , Masculino , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA