Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Nat Prod ; 87(2): 286-296, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284153

RESUMEN

Nine new alkaloids, eugeniinalines A-H (1-8) and (+)-eburnamenine N-oxide (9), comprising one quinoline, six indole, and two isogranatanine alkaloids, were isolated from the stem-bark extract of the Malayan Leuconotis eugeniifolia. The structures and absolute configurations of these alkaloids were established based on the analysis of the spectroscopic data, GIAO NMR calculations, DP4+ probability analysis, TDDFT-ECD method, and X-ray diffraction analysis. Eugeniinaline A (1) represents a new pentacyclic quinoline alkaloid with a 6/6/5/6/7 ring system. Eugeniinaline G (7) and its seco-derivative, eugeniinaline H (8), were the first isogranatanine alkaloids isolated as natural products. The known alkaloids leucolusine (10) and melokhanine A (11) were found to be the same compound, based on comparison of the spectroscopic data of both compounds, with the absolute configuration of (7R, 20R, 21S). Eugeniinalines A and G (1 and 7) showed cytotoxic activity against the HT-29 cancer cell line with IC50 values of 7.1 and 7.2 µM, respectively.


Asunto(s)
Alcaloides , Antineoplásicos , Apocynaceae , Quinolinas , Humanos , Alcaloides/farmacología , Apocynaceae/química , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Quinolinas/farmacología , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/farmacología
2.
J Nat Prod ; 86(1): 232-236, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36651825

RESUMEN

Eugeniifoline (1), a pentacyclic indole alkaloid with a five-membered ring E, was isolated for the first time as a natural product from the stem-bark extract of Leuconotis eugeniifolia. Eugeniifoline (1) was previously reported as a synthetic product from a diversity-enhanced extract, but with the configuration at C-21 reported as S (1a). The configuration at C-21 was revised to R as shown in 1, based on the NOE data, GIAO NMR calculations, and DP4+ probability analysis, as well as the TDDFT-ECD method.


Asunto(s)
Apocynaceae , Alcaloides Indólicos , Apocynaceae/química , Alcaloides Indólicos/química , Estructura Molecular , Extractos Vegetales
3.
J Phys Chem Lett ; 12(49): 11795-11801, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34860528

RESUMEN

The synthesis of dimethoxymethane (DMM) from direct oxidation of dimethyl ether (DME) is a green and competitive route with good atomic economy and low carbon emission and is also an urgent need. In this work, biomass-based carbon-supported sulfate catalysts were designed and prepared for the efficient synthesis of DMM from DME oxidation. The prepared carbon support from cellulose displayed much larger specific surface area and a developed microporous structure, which effectively benefited a high dispersion of sulfate components, leading to mainly weak acid sites and more oxygen functional groups on the catalyst surface. The Ti(SO4)2/PC-H2SO4 catalyst exhibits excellent performance for DME oxidation with DMM1-2 selectivity up to 96.7%, and DMM selectivity reaches 89.1%, notably higher than that of previously reported results. The distinctive surface structure and chemical properties of the carbon support have important impacts on the dispersion state of sulfate species, affecting the acidic and redox properties of the catalysts.

4.
Sci Rep ; 3: 2813, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24085106

RESUMEN

To substitute for petroleum, Fischer-Tropsch synthesis (FTS) is an environmentally benign process to produce synthetic diesel (n-paraffin) from syngas. Industrially, the synthetic gasoline (iso-paraffin) can be produced with a FTS process followed by isomerization and hydrocracking processes over solid-acid catalysts. Herein, we demonstrate a cobalt nano-catalyst synthesized by physical-sputtering method that the metallic cobalt nano-particles homogeneously disperse on the H-ZSM5 zeolite support with weak Metal-Support Interactions (MSI). This catalyst performed the high gasoline-range iso-paraffin productivity through the combined FTS, isomerization and hydrocracking reactions. The weak MSI results in the easy reducibility of the cobalt nano-particles; the high cobalt dispersion accelerates n-paraffin diffusion to the neighboring acidic sites on the H-ZSM5 support for isomerization and hydrocracking. Both factors guarantee its high CO conversion and iso-paraffin selectivity. This physical-sputtering technique to synthesize the supported metallic nano-catalyst is a promising way to solve the critical problems caused by strong MSI for various processes.

5.
J Hazard Mater ; 260: 543-51, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23811376

RESUMEN

NO(x) emission control of lean-burn engines is one of the great challenges in the world. Herein, the MnOx model catalysts with the different calcination temperatures were synthesized to investigate their NO adsorbability for lean-burn exhausts. The transformation from (ß-)MnO2 to (α-)Mn2O3 following the increased calcination temperatures was evidenced from the viewpoint of the local atomic level. Among these samples, the one calcined at 550 °C containing the single α-Mn2O3 phase displayed the best NO adsorbability: NO was mainly adsorbed in the forms of NO/nitrites and NO2/nitrates at the low and high temperatures, respectively; the NO oxidation ability displayed the volcano-shape following the increased operating temperatures, and reached the maximum, i.e. 92.4% of the NO-to-NO2 conversion, at 250 °C. Moreover, this sample presented the efficiently reversible NO adsorption/desorption performance in alternative lean-burn/fuel-rich atmospheres, due to the weakly bonded NO(x) on it. The superficial oxygen species plays a critical role for the NO oxidation over α-Mn2O3. The consumed superficial oxygen could be further compensated by the gaseous and lattice oxygen therein. Our findings show that the α-Mn2O3 material is a promising NO(x) adsorber for lean-burn exhausts even at low operating temperatures.


Asunto(s)
Compuestos de Manganeso/química , Óxido Nítrico/química , Óxidos/química , Oxígeno/química , Adsorción , Contaminación del Aire/prevención & control , Atmósfera , Catálisis , Especies Reactivas de Oxígeno , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Factores de Tiempo , Emisiones de Vehículos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA