Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurosci Lett ; 836: 137873, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871020

RESUMEN

CONTEXT: Aging is a major risk factor for various neurodegenerative diseases, and ferroptosis has been identified as an important mode of cell death during accelerated aging. As the main component of the edible plant YuZhu in China, Polygonatum polysaccharide (POP) is an important natural compound with anti-aging properties. OBJECTIVE: To evaluate the anti-aging effects of POP and the underlying molecular mechanisms involved and to evaluate the overall anti-aging effects of POP on cognitive impairment due to accelerated aging. MATERIALS AND METHODS: A D-galactose (D-gal)-induced accelerated aging rat model was established to evaluate the anti-aging effects of POP and the underlying molecular mechanisms involved. In turn, Morris water maze and open field experiments were used to evaluate the anti-aging effects of POP on cognitive impairment due to accelerated aging. RESULTS: The mechanism by which POP affects nuclear factor E2-related factor 2 (Nrf2), an essential transcription factor, was confirmed. POP significantly improved d-gal-induced cognitive dysfunction in treated model rats, which exhibited reduced pathological changes in the hippocampus, reduced latency of the water maze platform, and increased exploration time in the central area in the open field experiment compared to those of untreated model rats. Furthermore, POP intervention downregulated ferroptosis-related proteins and upregulated Nrf2 expression, and selective inhibition of Nrf2 eliminated the ability of POP to reduce ferroptosis. CONCLUSIONS: POP is a natural ingredient with therapeutic potential due to its ability to alleviate aging by activating Nrf2, inhibiting ferroptosis, and alleviating cognitive dysfunction.

3.
Am J Chin Med ; 52(3): 821-839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699996

RESUMEN

Panax notoginseng saponins (PNS), the primary medicinal ingredient of Panax notoginseng, mitigates cerebral ischemia-reperfusion injury (CIRI) by inhibiting inflammation, regulating oxidative stress, promoting angiogenesis, and improving microcirculation. Moreover, PNS activates nuclear factor erythroid 2-related factor 2 (Nrf2), which is known to inhibit ferroptosis and reduce inflammation in the rat brain. However, the molecular regulatory roles of PNS in CIRI-induced ferroptosis remain unclear. In this study, we aimed to investigate the effects of PNS on ferroptosis and inflammation in CIRI. We induced ferroptosis in SH-SY5Y cells via erastin stimulation and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. Furthermore, we determined the effect of PNS treatment in a rat model of middle cerebral artery occlusion/reperfusion and assessed the underlying mechanism. We also analyzed the changes in the expression of ferroptosis-related proteins and inflammatory factors in the established rat model. OGD/R led to an increase in the levels of ferroptosis markers in SH-SY5Y cells, which were reduced by PNS treatment. In the rat model, combined treatment with an Nrf2 agonist, Nrf2 inhibitor, and PNS-Nrf2 inhibitor confirmed that PNS promotes Nrf2 nuclear localization and reduces ferroptosis and inflammatory responses, thereby mitigating brain injury. Mechanistically, PNS treatment facilitated Nrf2 activation, thereby regulating the expression of iron overload and lipid peroxidation-related proteins and the activities of anti-oxidant enzymes. This cascade inhibited ferroptosis and mitigated CIRI. Altogether, these results suggest that the ferroptosis-mediated activation of Nrf2 by PNS reduces inflammation and is a promising therapeutic approach for CIRI.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Panax notoginseng , Ratas Sprague-Dawley , Daño por Reperfusión , Saponinas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ferroptosis/efectos de los fármacos , Panax notoginseng/química , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Saponinas/farmacología , Masculino , Ratas , Humanos , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Fitoterapia
4.
Front Mol Neurosci ; 17: 1400668, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817551

RESUMEN

Objective: This study aims to visualize the trends and hotspots in the research of "ferroptosis in PD" and "pyroptosis in PD" through bibliometric analysis from the past to 2024. Methods: Literature was retrieved from the Web of Science Core Collection (WoSCC) from the past to February 16, 2024, and bibliometric analysis was conducted using Vosviewer and Citespace. Results: 283 and 542 papers were collected in the field of "ferroptosis in PD" and "pyroptosis in PD." The number of publications in both fields has increased yearly, especially in "ferroptosis in PD," which will become the focus of PD research. China, the United States and England had extensive exchanges and collaborations in both fields, and more than 60% of the top 10 institutions were from China. In the fields of "ferroptosis in PD" and "pyroptosis in PD," the University of Melbourne and Nanjing Medical University stood out in terms of publication numbers, citation frequency, and centrality, and the most influential journals were Cell and Nature, respectively. The keyword time zone map showed that molecular mechanisms and neurons were the research hotspots of "ferroptosis in PD" in 2023, while memory and receptor 2 were the research hotspots of "pyroptosis in PD" in 2023, which may predict the future research direction. Conclusion: This study provides insights into the development, collaborations, research themes, hotspots, and tendencies of "ferroptosis in PD" and "pyroptosis in PD." Overall situation of these fields is available for researchers to further explore the underlying mechanisms and potential treatments.

5.
Front Microbiol ; 15: 1376418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659977

RESUMEN

Alpine wetlands are critical ecosystems for global carbon (C) cycling and climate change mitigation. Ecological restoration projects for alpine grazing wetlands are urgently needed, especially due to their critical role as carbon (C) sinks. However, the fate of the C pool in alpine wetlands after restoration from grazing remains unclear. In this study, soil samples from both grazed and restored wetlands in Zoige (near Hongyuan County, Sichuan Province, China) were collected to analyze soil organic carbon (SOC) fractions, arbuscular mycorrhizal fungi (AMF), soil properties, and plant biomass. Moreover, the Tea Bag Index (TBI) was applied to assess the initial decomposition rate (k) and stabilization factor (S), providing a novel perspective on SOC dynamics. The results of this research revealed that the mineral-associated organic carbon (MAOC) was 1.40 times higher in restored sites compared to grazed sites, although no significant difference in particulate organic carbon (POC) was detected between the two site types. Furthermore, the increased MAOC after restoration exhibited a significant positive correlation with various parameters including S, C and N content, aboveground biomass, WSOC, AMF diversity, and NH4+. This indicates that restoration significantly increases plant primary production, litter turnover, soil characteristics, and AMF diversity, thereby enhancing the C stabilization capacity of alpine wetland soils.

6.
Heliyon ; 10(8): e29702, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660286

RESUMEN

Serratia marcescens is an opportunistic and nosocomial pathogen found in the intensive care unit (ICU), but its antimicrobial resistance (AMR) is rarely addressed. Here, we reported two blaKPC-2-positive S. marcescens strains, SMBC31 and SMBC50, recovered from the ICU of a hospital in Zhengzhou, China. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while S1-PFGE was employed to demonstrate plasmid size approximation. Complete genome sequences were obtained through Illumina NovaSeq 6000 and Oxford Nanopore Technologies. Both strains exhibit resistance to meropenem and harbor the blaKPC-2 and blaSRT-1 resistance genes. The plasmid pSMBC31-39K in strain SMBC31 and pSMBC50-107K in strain SMBC50 were identified as carrying the blaKPC-2 gene. Notably, both of these plasmids were successfully transferred to Escherichia coli strain J53. Phylogenetic analysis based on plasmid sequences revealed that pSMBC31-39K exhibited high homology with plasmids found in Aeromonas caviae, Citrobacter sp., and Pseudomonas aeruginosa, while pSMBC50-107K showed significant similarity to those of E. coli and Klebsiella pneumoniae. Notably, the coexistence of blaKPC-2 and blaSRT-1 was observed in all 94 KPC-2-producing S. marcescens strains by mining all genomes available under the GenBank database, which were mainly isolated from hospitalized patients. The emergence of multidrug-resistant S. marcescens poses significant challenges in treating clinical infections, highlighting the need for increased surveillance of this pathogen.

7.
Environ Pollut ; 347: 123710, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458518

RESUMEN

There is a lack of knowledge on the biodegradation mechanisms of benzene and benzo [a]pyrene (BaP), representative compounds of polycyclic aromatic hydrocarbons (PAHs), and benzene, toluene, ethylbenzene, and xylene (BTEX), under individually and mixed contaminated soils. Therefore, a set of microcosm experiments were conducted to explore the influence of benzene and BaP on biodegradation under individual and mixed contaminated condition, and their subsequent influence on native microbial consortium. The results revealed that the total mass loss of benzene was 56.0% under benzene and BaP mixed contamination, which was less than that of individual benzene contamination (78.3%). On the other hand, the mass loss of BaP was slightly boosted to 17.6% under the condition of benzene mixed contamination with BaP from that of individual BaP contamination (14.4%). The significant differences between the microbial and biocide treatments for both benzene and BaP removal demonstrated that microbial degradation played a crucial role in the mass loss for both contaminants. In addition, the microbial analyses revealed that the contamination of benzene played a major role in the fluctuations of microbial compositions under co-contaminated conditions. Rhodococcus, Nocardioides, Gailla, and norank_c_Gitt-GS-136 performed a major role in benzene biodegradation under individual and mixed contaminated conditions while Rhodococcus, Noviherbaspirillum, and Phenylobacterium were highly involved in BaP biodegradation. Moreover, binary benzene and BaP contamination highly reduced the Rhodococcus abundance, indicating the toxic influence of co-contamination on the functional key genus. Enzymatic activities revealed that catalase, lipase, and dehydrogenase activities proliferated while polyphenol oxidase was reduced with contamination compared to the control treatment. These results provided the fundamental information to facilitate the development of more efficient bioremediation strategies, which can be tailored to specific remediation of different contamination scenarios.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Benceno/metabolismo , Benzo(a)pireno/metabolismo , Tolueno/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Suelo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo
8.
Fish Shellfish Immunol ; 149: 109522, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548190

RESUMEN

Singapore grouper iridovirus (SGIV) is one of the major infectious diseases responsible for high mortality and huge economic losses in the grouper aquaculture industry. Berberine (BBR), a naturally occurring plant alkaloid, is a phytochemical having a variety of biological properties, such as antiviral, antioxidant, and anti-inflammatory effects. In this work, we used an in vitro model based on Western blot, ROS fluorescence probe, and real-time quantitative PCR (qRT-PCR) to examine the antiviral qualities of BBR against SGIV. The outcomes demonstrated that varying BBR concentrations could significantly inhibit the replication of SGIV. In addition, BBR greatly inhibited the production of genes associated with pro-inflammatory cytokines in SGIV-infected or SGIV-uninfected GS cells based on qRT-PCR data. Subsequent investigations demonstrated that BBR suppressed the expression of the promoter activity of NF-κB and NF-κB-p65 protein. Additionally, BBR reduced the phosphorylation of ERK 1/2, JNK, and p38. Furthermore, BBR also inhibits SGIV-induced ROS production by upregulating the expression of antioxidant-related genes. In conclusion, BBR is a viable therapy option for SGIV infection due to its antiviral properties.


Asunto(s)
Berberina , Enfermedades de los Peces , Estrés Oxidativo , Replicación Viral , Berberina/farmacología , Animales , Estrés Oxidativo/efectos de los fármacos , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Replicación Viral/efectos de los fármacos , Inflamación/inmunología , Inflamación/veterinaria , Antivirales/farmacología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Ranavirus/fisiología , Línea Celular
9.
ACS Nano ; 18(9): 7253-7266, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38380803

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa), a drug-resistant Gram-negative pathogen, is listed among the "critical" group of pathogens by the World Health Organization urgently needing efficacious antibiotics in the clinics. Nanomaterials especially silver nanoparticles (AgNPs) due to the broad-spectrum antimicrobial activity are tested in antimicrobial therapeutic applications. Pathogens rapidly develop resistance to AgNPs; however, the health threat from antibiotic-resistant pathogens remains challenging. Here we present a strategy to prevent bacterial resistance to silver nanomaterials through imparting chirality to silver nanoclusters (AgNCs). Nonchiral AgNCs with high efficacy against P. aeruginosa causes heritable resistance, as indicated by a 5.4-fold increase in the minimum inhibitory concentration (MIC) after 9 repeated passages. Whole-genome sequencing identifies a Rhs mutation related to the wall of Gram-negative bacteria that possibly causes morphology changes in resistance compared to susceptible P. aeruginosa. Nevertheless, AgNCs with laevorotary chirality (l-AgNCs) induce negligible resistance even after 40 repeated passages and maintain a superior antibacterial efficiency at the MIC. l-AgNCs also show high cytocompatibility; negligible cytotoxicity to mammalian cells including JB6, H460, HEK293, and RAW264.7 is observed even at 30-fold MIC. l-AgNCs thus are examined as an alternative to levofloxacin in vivo, healing wound infections of P. aeruginosa efficaciously. This work provides a potential opportunity to confront the rising threat of antimicrobial resistance by developing chiral nanoclusters.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Plata/farmacología , Plata/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Células HEK293 , Pseudomonas aeruginosa , Pruebas de Sensibilidad Microbiana , Mamíferos
10.
Nanomaterials (Basel) ; 14(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38392720

RESUMEN

Electrowetting with a dielectric layer is commonly preferred in practical applications. However, its potential is often limited by factors like the properties of the dielectric layer and its breakdown, along with the complexity of the deposition method. Fortunately, advancements in 3D inkjet printing offer a more adaptable solution for making patterned functional layers. In this study, we used a negative photoresist (HN-1901) to create a new dielectric layer for an electrowetting display on a 3-inch ITO glass using a Dimatix DMP-2580 inkjet printer. The resulting devices performed better due to their enhanced resistance to dielectric breakdown. We meticulously investigated the physical properties of the photoresist material and printer settings to achieve optimal printing. We also controlled the uniformity of the dielectric layer by adjusting ink drop spacing. Compared to traditional electrowetting display devices, those with inkjet-printed dielectric layers showed significantly fewer defects like bubbles and electrode corrosion. They maintained an outstanding response time and breakdown resistance, operating at an open voltage of 20 V. Remarkably, these devices achieved faster response times of ton 22.3 ms and toff 14.2 ms, surpassing the performance of the standard device.

12.
Sensors (Basel) ; 24(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339733

RESUMEN

A dynamic gravimeter with an atomic interferometer (AI) can perform absolute gravity measurements with high precision. AI-based dynamic gravity measurement is a type of joint measurement that uses an AI sensor and a classical accelerometer. The coupling of the two sensors may degrade the measurement precision. In this study, we analyzed the cross-coupling effect and introduced a recovery vector to suppress this effect. We improved the phase noise of the interference fringe by a factor of 1.9 by performing marine gravity measurements using an AI-based gravimeter and optimizing the recovery vector. Marine gravity measurements were performed, and high gravity measurement precision was achieved. The external and inner coincidence accuracies of the gravity measurement were ±0.42 mGal and ±0.46 mGal after optimizing the cross-coupling effect, which was improved by factors of 4.18 and 4.21 compared to the cases without optimization.

13.
ACS Appl Mater Interfaces ; 16(3): 4126-4137, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38191293

RESUMEN

Droplet directional transport is one of the central topics in microfluidics and lab-on-a-chip applications. Selective transport of diverse droplets, particularly in another liquid phase environment with controlled directions, is still challenging. In this work, we propose an electric-field gradient-driven droplet directional transport platform facilitated by a robust lubricant surface. On the platform, we clearly demonstrated a liquid-inherent critical frequency-dominated selective transport of diverse droplets and a driving mechanism transition from electrowetting to liquid dielectrophoresis. Enlightened by the Kelvin-Helmholtz theory, we first realize the directional droplet transport in another liquid phase whenever a permittivity difference exists. Co-transport of multiple droplets and various combinations of droplet types, as well as multifunctional droplet transport modes, are realized based on the presented powerful electric-field gradient-driven platform, overcoming the limitations of the surrounding environment, liquid conductivity, and intrinsic solid-liquid wetting property existing in traditional droplet transport strategies. This work may inspire new applications in liquid separation, multiphase microfluidic manipulation, chemical reagent selection, and so on.

14.
Am J Prev Med ; 66(2): 371-379, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37802306

RESUMEN

INTRODUCTION: This study aimed to analyze changes in cardiovascular disease (CVD) mortality attributable to major environmental risks in China during 1990-2019, and their associations with age, period, and birth cohort. METHODS: Mortality data were obtained from the Global Burden of Disease Study 2019. Major environmental risks included ambient particulate matter pollution (APMP), household air pollution from solid fuels (HAP), low temperature, high temperature, and lead exposure. Age-period-cohort modeling was used to estimate the overall annual percentage change in CVD mortality (net drift), annual percentage change for each age group (local drift), expected longitudinal age-specific rate (longitudinal age curve), period and cohort relative risks (RRs, period/cohort effects) between 1990 and 2019. Analyses were conducted in 2021-2022. RESULTS: In China, five major environmental risks led to 1.62 million CVD deaths in 2019. Among these risks, the primary contributor to CVD mortality transited from HAP in 1990 to APMP in 2019. There was also an improvement in attributable CVD mortality rates for low temperature and lead exposure during 1990-2019, while an unfavorable trend was noted for high temperature. The longitudinal age curve demonstrated increased attributable CVD mortality rates with age groups for all environmental risks, with similar patterns for both sexes. Period and cohort RRs suggested generally improved risks of attributable CVD mortality for HAP, low temperature, and lead exposure, but worsening risks for APMP and high temperature in both genders, except for period risks after 2010-2014 for APMP in both sexes, period risks after 2000-2004 for high temperature in females, and cohort risks in cohorts born after 1955 for APMP and high temperature in females. CONCLUSIONS: Over the study period, there was a significant improvement in attributable CVD mortality rates in China for HAP, low temperature and lead exposure, but an unfavorable trend was noted for APMP and high temperature.


Asunto(s)
Contaminación del Aire , Enfermedades Cardiovasculares , Humanos , Masculino , Femenino , Plomo , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Riesgo , China/epidemiología , Exposición a Riesgos Ambientales/efectos adversos
15.
Adv Mater ; 36(8): e2307918, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37852010

RESUMEN

Triboelectric nanogenerator (TENG) is becoming a sustainable and renewable way of energy harvesting and self-powered sensing because of low cost, simple structure, and high efficiency. However, the output current of existing TENGs is still low. It is proposed that the output current of TENGs can be dramatically improved if the triboelectric charges can distribute inside the triboelectric layers. Herein, a novel single-electrode conductive network-based TENG (CN-TENG) is developed by introducing a conductive network of multiwalled carbon nanotubes in dielectric triboelectric layer of thermoplastic polyurethane (TPU). In this CN-TENG, the contact electrification-induced charges distribute on both the surface and interior of the dielectric TPU layer. Thus, the short-circuit current of CN-TENG improves for 100-fold, compared with that of traditional dielectric TENG. In addition, this CN-TENG, even without packing, can work stably in high-humidity environments and even in the rain, which is another main challenge for conventional TENGs due to charge leakage. Further, this CN-TENG is applied for the first time, to successfully distinguish conductive and dielectric materials. This work provides a new and effective strategy to fabricate TENGs with high output current and humidity-resistivity, greatly expanding their practical applications in energy harvesting, movement sensing, human-machine interaction, and so on.

16.
Sci Total Environ ; 912: 168862, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38016555

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) are the most persistent and toxic organic contaminants often found co-contaminated in anthropogenic and petrochemical industrial sites. Therefore, an experiment was performed for the safe biodegradation of benzene and benzo[a]pyrene (BaP) through thermally-enhanced biodegradation, and to explore the influence of elevated thermal treatments on microbial diversity and composition. The results revealed that elevated thermal treatments (15 to 45 °C) significantly enhanced the diversity of both bacteria and fungi. The composition analysis revealed that short-term and long-term elevated temperature conditions can directly enhance the specificity of microorganisms that play a crucial role in the biodegradation of benzene and BaP co-contaminated soil. Moreover, the indirect role of elevated temperature conditions on microbial compositions was through the fluctuations of soil properties, especially soil pH, moisture, TOC, potassium, phosphorous, total Fe, Fe(II), and Fe(III). In addition, the correlation analyses revealed that thermal exposure enhances the synergistic association (fungal-fungal, fungal-bacterial, bacterial-bacterial) of microbes to degrade the toxic contaminants and to cope with harsh environmental conditions. These results concluded that the biodegradation of benzene and BaP co-contamination was efficiently enhanced under the thermally-enhanced biodegradation approach and the elevation of temperature can affect the microbial compositions directly via microbial specificity or indirectly by influencing the soil properties.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Benceno/análisis , Benzo(a)pireno/metabolismo , Suelo , Compuestos Férricos , Contaminantes del Suelo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Biodegradación Ambiental , Microbiología del Suelo , Bacterias/metabolismo
17.
J Theor Biol ; 579: 111703, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38096979

RESUMEN

In this study, we focus on the impacts of spatial-temporal heterogeneity of human-to-human contacts on the spread of infectious diseases and develop a multi-type branching process model by introducing random human-to-human contact mode into a structured population. We provide the general formulas of the generation size, extinction probability, and basic reproduction number of the proposed branching process model. The result shows that the natural temporal heterogeneity (i.e. random contacts over time) can lead to a higher extinction probability while remains the same basic reproduction number and generation size. This is also numerically verified by choosing the real contact distributions from different circumstances of four countries. In addition, we observe a non-monotonic pattern of the differences, against the transmission probability and the mean contact rate, between the extinction probabilities under the constant and random contact patterns. Given the spatial heterogeneity, we show that it can contribute to the increase of basic reproduction number, but also increase the extinction probability of the infectious disease. This study adds novel insights to the course of the impact of heterogeneity on the transmission dynamics and also provides additional evidence for the limited role of reproduction numbers.


Asunto(s)
Enfermedades Transmisibles , Modelos Biológicos , Humanos , Enfermedades Transmisibles/epidemiología , Probabilidad , Número Básico de Reproducción
18.
Langmuir ; 39(49): 17680-17687, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38041643

RESUMEN

Ion intercalation in graphite is widely used in desalination, batteries, and graphene stripping; it has high value in the fields of industry and research. However, selective ion transport, particularly (de)hydration energy and the hydration shell effect on the intercalation of ions into the graphite interlayer spaces, is still unclear. Here, we report low-voltage ion intercalation as observed by electrowetting on highly oriented pyrolytic graphite of an aqueous drop containing various inorganic salts. The electrowetting response exhibits asymmetric behavior with no contact angle change for the negative polarity and a threshold voltage for the onset of the contact angle change for the positive polarity. To explain the asymmetric electrowetting behavior and quantitatively predict the threshold voltage, we developed a physical model based on the hydration shell energy and size of the ion that undergoes partial breaking/deformation during the co-intercalation into the spaces between graphite layers. Electrowetting experiments using ions with various hydration energies and hydration radii were performed to confirm the prediction of the model. Further, we show a strategy to make the electrowetting response of LiCl drops symmetric via tuning the hydration energy of the Li+ ions using a binary solvent of a glycerol-water mixture. This article will provide an understanding of the hydration (solvation) energy dependence intercalation mechanism in graphite for electrowetting, which underpins various processes such as ion battery applications and the graphene exfoliation process.

19.
RSC Adv ; 13(45): 31659-31666, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37908647

RESUMEN

Reversed-electrowetting based droplet electricity generator (REWOD-DEG) shows merits in high power densities, tunable output formats, and wide adaptability to diverse mechanical energies. However, the surface charge trapping and dielectric failure, which are also common challenges for electrowetting system, hinders the development of reliable REWOD-DEGs for long-term running. We innovatively introduce a slippery lubricant-infused porous surface (SLIPS) into REWOD-DEG. Benefits from the significant inhibitory effect for surface charge trapping and ambient contamination, self-healing characteristic given by SLIPS, and robust reversed-electrowetting based energy harvesting were achieved. The SLIPS enhanced REWOD-DEG experienced 100 days of intermittent energy harvesting without deterioration. In addition, the device shows robust performances when exposed to a variety of extreme working conditions, like low temperature, pH, humidity, fouling, and even scratching. This work may address the core application challenges of REWOD based devices, and inspire the development of other robust droplet-based electricity generators.

20.
BMC Cancer ; 23(1): 1040, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891512

RESUMEN

BACKGROUND: Radio/chemotherapy and immune systems provide examples of hormesis, as tumours can be stimulated (or reduced) at low radio/chemical or antibody doses but inhibited (or stimulated) by high doses. METHODS: Interactions between effector cells, tumour cells and cytokines with pulsed radio/chemo-immunotherapy were modelled using a pulse differential system. RESULTS: Our results show that radio/chemotherapy (dose) response curves (RCRC) and/or immune response curves (IRC) or a combination of both, undergo homeostatic changes or catastrophic shifts revealing hormesis in many parameter regions. Some mixed response curves had multiple humps, posing challenges for interpretation of clinical trials and experimental design, due to a fuzzy region between an hormetic zone and the toxic threshold. Mixed response curves from two parameter bifurcation analyses demonstrated that low-dose radio/chemotherapy and strong immunotherapy counteract side-effects of radio/chemotherapy on effector cells and cytokines and stimulate effects of immunotherapy on tumour growth. The implications for clinical applications were confirmed by good fits to our model of RCRC and IRC data. CONCLUSIONS: The combination of low-dose radio/chemotherapy and high-dose immunotherapy is very effective for many solid tumours. The net benefit and synergistic effect of combined therapy is conducive to the treatment and inhibition of tumour cells.


Asunto(s)
Hormesis , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia/efectos adversos , Citocinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA