Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Urol ; 24(1): 165, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090582

RESUMEN

BACKGROUND: We investigated the feasibility of the tertiary lymphoid structure (TLS) as a prognostic marker for penile squamous cell carcinoma(SCC). METHODS: We retrospectively collected data from 83 patients with penile squamous cell carcinoma. H&E-stained slides were reviewed for TLS density. In addition, clinical parameters were analyzed, the prognostic value of these parameters on overall survival (OS) was evaluated using ‒ Kaplan-Meier survival curves, and the prognostic value of influencing factors was evaluated using Cox multifactor design nomogram analysis. RESULT: BMI, T, N, and M are significant in the survival curve with or without tertiary lymphoid structure. BMI, T, N, M and TLS were used to construct a prognostic model for penile squamous cell carcinoma, and the prediction accuracy reached a consensus of 0.884(0.835-0.932), and the decision consensus reached 0.581(0.508-0.655). CONCLUSION: TLS may be a positive prognostic factor for penile squamous cell carcinoma, and the combination of BMI, T, N and M can better evaluate the prognosis of patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Pene , Estructuras Linfoides Terciarias , Masculino , Neoplasias del Pene/patología , Neoplasias del Pene/mortalidad , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/mortalidad , Pronóstico , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Estructuras Linfoides Terciarias/patología , Adulto , Tasa de Supervivencia
2.
BMC Cancer ; 24(1): 859, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026219

RESUMEN

BACKGROUND: Adverse reactions are prone to occur in the early stage of chemotherapy and can negatively affect the dietary intake and nutritional status of breast cancer (BC) patients. Consequently, they need to participate in health self-management and lifestyle promotion programs. Early multidisciplinary interventions aim to enhance dietary management behavior and quality of life in chemotherapy-treated BC patients. METHODS: This single-blinded, single-center, randomized controlled trial will include 88 females who have not yet started the early or middle stage of the chemotherapy cycle. A random number table will be used randomly assign females to the intervention group or usual group at a 1:1 ratio. The intervention elements are based on the theoretical guidance of the Integrated Theory of Health Behavior Change (ITHBC). A multidisciplinary team (MDT) comprising oncologists, dietitians, nurses, traditional Chinese medicine (TCM) practitioners, and psychologists will provide the intervention. Intervention sessions will be conducted once a week for 8 weeks, beginning in the early or middle stage of the chemotherapy cycle and continuing through admission and a home-based interval chemotherapy period. The intervention includes face-to-face discussions, online meetings, WeChat messaging, and telephone calls. The themes target adverse reactions, dietary information and habits, self-care self-efficacy, treatment self-regulation, dietary supplement and TCM use, social support, weight management, and outcome expectations. The primary outcome is dietary management behavior measured by the Dietary Management Behavior Questionnaire (DMBQ). Secondary outcomes are self-care self-efficacy assessed by the Strategies Used by People to Promote Health (SUPPH); quality of life measured by the Functional Assessment of Cancer Therapy-Breast (FACT-B); and body mass index (BMI) measured by an electronic meter. All participants will be assessed at baseline and immediately, 1 month, 3 months, 6 months, and 12 months after the intervention. DISCUSSION: Early dietary intervention is needed, as diet is one of the most common health self-management behaviors influenced by chemotherapy. Early multidisciplinary interventions may provide a foundation for dietary self-management and improve nutritional status in the survival period. TRIAL REGISTRATION: This intervention protocol was registered with the Chinese Clinical Trials Registry (ChiCTR2300076503, October 10, 2023).


Asunto(s)
Neoplasias de la Mama , Calidad de Vida , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/terapia , Neoplasias de la Mama/psicología , Método Simple Ciego , Persona de Mediana Edad , Adulto , Conductas Relacionadas con la Salud , Ensayos Clínicos Controlados Aleatorios como Asunto , Estado Nutricional , Conducta Alimentaria
3.
Tree Physiol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976033

RESUMEN

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation is frequently happened. However, the differential responses of mangrove plant at transcriptome combined metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina, a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using ICP-MS, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids, and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, finally glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.

4.
Colloids Surf B Biointerfaces ; 242: 114091, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018913

RESUMEN

Radiotherapy, despite its precision and non-invasiveness, often fails due to the resistance of cancer stem cells (CSCs), which are characterized by high self-renewal capabilities and superior DNA repair mechanisms. These cells can evade RT and lead to tumor recurrence and metastasis. To address this challenge, a novel delivery system named PB has been introduced. This system combines liposomes with platelet membranes to encapsulate Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES), thus enhancing its delivery and release specifically at tumor sites. In addition, this system not only targets CSCs effectively but also increases the local concentration of BPTES upon X-ray irradiation, which reduces glutathione levels in tumor cells, thereby increasing oxidative stress and damaging mitochondria. PB-elicited mitochondrial damage as the STING signal initiator, which mediated significant upregulation in the expression of a cGAS-STING pathway-related protein thereby amplifying the STING signal. Systemic intravenous administration of PB remarkably promoted DC maturation and CD8+ T cell infiltration, thus eliciting strong antitumor effects. Overall, this PB system presents a potent method to overcome CSC-related resistance and offers a promising approach for future cancer treatment protocols.

5.
Int J Surg ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905510

RESUMEN

BACKGROUND: Existing models do poorly when it comes to quantifying the risk of Lymph node metastases (LNM). This study aimed to develop a machine learning model for LNM in patients with T1 esophageal squamous cell carcinoma (ESCC). METHODS AND RESULTS: The study is multicenter, and population based. Elastic net regression (ELR), random forest (RF), extreme gradient boosting (XGB), and a combined (ensemble) model of these was generated. The contribution to the model of each factor was calculated. The models all exhibited potent discriminating power. The Elastic net regression performed best with externally validated AUC of 0.803, whereas the NCCN guidelines identified patients with LNM with an AUC of 0.576 and logistic model with an AUC of 0. 670. The most important features were lymphatic and vascular invasion and depth of tumor invasion. CONCLUSIONS: Models created utilizing machine learning approaches had excellent performance estimating the likelihood of LNM in T1 ESCC.

6.
Neural Regen Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934388

RESUMEN

ABSTRACT: Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly, metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore, the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood-brain barrier function. However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions.

7.
Pharmaceutics ; 16(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931953

RESUMEN

The inhibition of the immune response in the tumor microenvironment by therapy regimens can impede the eradication of tumors, potentially resulting in tumor metastasis. As a non-invasive therapeutic method, radiotherapy is utilized for tumor ablation. In this study, we aimed to improve the therapeutic impact of radiotherapy and trigger an immune response by formulating a benzothiazole sulfinate (BTS)-loaded fusion liposome (BFL) nanoplatform, which was then combined with radiotherapy for anti-cancer treatment. The platelet cell membrane, equipped with distinctive surface receptors, enables BFL to effectively target tumors while evading the immune system and adhering to tumor cells. This facilitates BFL's engulfment by cancer cells, subsequently releasing BTS within them. Following the release, the BTS produces sulfur dioxide (SO2) for gas therapy, initiating the oxidation of intracellular glutathione (GSH). This process demonstrates efficacy in repairing damage post-radiotherapy, thereby achieving effective radiosensitization. It was revealed that an immune response was triggered following the enhanced radiosensitization facilitated by BFL. This approach facilitated the maturation of dendritic cell (DC) within lymph nodes, leading to an increase in the proportion of T cells in distant tumors. This resulted in significant eradication of primary tumors and inhibition of growth in distant tumors. In summary, the integration of personalized BFL with radiotherapy shows potential in enhancing both tumor immune response and the elimination of tumors, including metastasis.

8.
Psychoneuroendocrinology ; 167: 107086, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38824765

RESUMEN

Major depressive disorder (MDD) is a psychiatric illness that can jeopardize the normal growth and development of adolescents. Approximately 40% of adolescent patients with MDD exhibit resistance to conventional antidepressants, leading to the development of Treatment-Resistant Depression (TRD). TRD is associated with severe impairments in social functioning and learning ability and an elevated risk of suicide, thereby imposing an additional societal burden. In this study, we conducted plasma metabolomic analysis on 53 adolescents diagnosed with first-episode drug-naïve MDD (FEDN-MDD), 53 adolescents with TRD, and 56 healthy controls (HCs) using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) and reversed-phase liquid chromatography-mass spectrometry (RPLC-MS). We established a diagnostic model by identifying differentially expressed metabolites and applying cluster analysis, metabolic pathway analysis, and multivariate linear support vector machine (SVM) algorithms. Our findings suggest that adolescent TRD shares similarities with FEDN-MDD in five amino acid metabolic pathways and exhibits distinct metabolic characteristics, particularly tyrosine and glycerophospholipid metabolism. Furthermore, through multivariate receiver operating characteristic (ROC) analysis, we optimized the area under the curve (AUC) and achieved the highest predictive accuracy, obtaining an AUC of 0.903 when comparing FEDN-MDD patients with HCs and an AUC of 0.968 when comparing TRD patients with HCs. This study provides new evidence for the identification of adolescent TRD and sheds light on different pathophysiologies by delineating the distinct plasma metabolic profiles of adolescent TRD and FEDN-MDD.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Metabolómica , Humanos , Adolescente , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/sangre , Femenino , Masculino , Trastorno Depresivo Resistente al Tratamiento/metabolismo , Metabolómica/métodos , Máquina de Vectores de Soporte , Antidepresivos/uso terapéutico , Glicerofosfolípidos/sangre , Glicerofosfolípidos/metabolismo , Estudios de Casos y Controles , Cromatografía Liquida/métodos
9.
Front Immunol ; 15: 1319863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756772

RESUMEN

Ischemic stroke (IS) is one of the leading causes of death and disability. Complicated mechanisms are involved in the pathogenesis of IS. Immunomodulatory mechanisms are crucial to IS. Acupuncture is a traditional non-drug treatment that has been extensively used to treat IS. The exploration of neuroimmune modulation will broaden the understanding of the mechanisms underlying acupuncture treatment. This review summarizes the immune response of immune cells, immune cytokines, and immune organs after an IS. The immunomodulatory mechanisms of acupuncture treatment on the central nervous system and peripheral immunity, as well as the factors that influence the effects of acupuncture treatment, were summarized. We suggest prospects and future directions for research on immunomodulatory mechanisms of acupuncture treatment for IS based on current progress, and we hope that these will provide inspiration for researchers. Additionally, acupuncture has shown favorable outcomes in the treatment of immune-based nervous system diseases, generating new directions for research on possible targets and treatments for immune-based nervous system diseases.


Asunto(s)
Terapia por Acupuntura , Inmunomodulación , Accidente Cerebrovascular Isquémico , Humanos , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/inmunología , Animales , Neuroinmunomodulación , Citocinas/metabolismo
10.
J Colloid Interface Sci ; 666: 371-379, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603879

RESUMEN

VO2 (B) is recognized as a promising cathode material for aqueous zinc metal batteries (AZMBs) owing to its remarkable specific capacity and its unique, expansive tunnel structure, which facilitates the reversible insertion and extraction of Zn2+. Nonetheless, challenges such as the inherent instability of the VO2 structure, poor ion/electron transport and a limited capacity due to the low redox potential of the V3+/V4+ couple have hindered its wider application. In this study, we present a strategy to replace vanadium ions by doping Al3+ in VO2. This approach activates the multi-electron reaction (V4+/V5+), to increase the specific capacity and improve the structural stability by forming robust V5+O and Al3+O bonds. It also induces a local electric field by altering the local electron arrangement, which significantly accelerates the ion/electron transport process. As a result, Al-doped VO2 exhibits superior specific capacity, improved cycling stability, and accelerated electronic transport kinetics compared to undoped VO2. The beneficial effects of heterogeneous atomic doping observed here may provide valuable insights into the improvement electrode materials in metal-ion battery systems other than those based on Zn.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38547523

RESUMEN

ABSTRACT: Sepsis-induced myocardial dysfunction (SIMD) commonly occurs in individuals with sepsis and is a severe complication with high morbidity and mortality rates. The current study aimed to investigate the effects and potential mechanisms of the natural steroidal sapogenin ruscogenin (RUS) against lipopolysaccharide (LPS)-induced myocardial injury in septic mice. We found that RUS effectively alleviated myocardial pathological damage, normalized cardiac function, and increased survival in septic mice. RNA sequencing (RNA-seq) demonstrated that RUS administration significantly inhibited the activation of the NOD-like receptor signaling pathway in the myocardial tissues of septic mice. Subsequent experiments further confirmed that RUS suppressed myocardial inflammation and pyroptosis during sepsis. Additionally, cultured HL-1 cardiomyocytes were challenged with LPS, and we observed that RUS could protect these cells against LPS-induced cytotoxicity by suppressing inflammation and pyroptosis. Notably, both the in vivo and in vitro findings indicated that RUS inhibited NLRP3 upregulation in cardiomyocytes stimulated with LPS. As expected, knockdown of NLRP3 blocked the LPS-induced activation of inflammation and pyroptosis in HL-1 cells. Furthermore, the cardioprotective effects of RUS on HL-1 cells under LPS stimulation were abolished by the novel NLRP3 agonist BMS-986299. Taken together, our results suggest that RUS can alleviate myocardial injury during sepsis, at least in part by suppressing NLRP3-mediated inflammation and pyroptosis, highlighting the potential of this molecule as a promising candidate for SIMD therapy.

12.
BMJ Open Gastroenterol ; 11(1)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538088

RESUMEN

OBJECTIVE: This study aimed to develop and validate robust predictive models for patients with oesophageal cancer who achieved a pathological complete response (pCR) and those who did not (non-pCR) after neoadjuvant therapy and oesophagectomy. DESIGN: Clinicopathological data of 6517 primary oesophageal cancer patients who underwent neoadjuvant therapy and oesophagectomy were obtained from the National Cancer Database for the training cohort. An independent cohort of 444 Chinese patients served as the validation set. Two distinct multivariable Cox models of overall survival (OS) were constructed for pCR and non-pCR patients, respectively, and were presented using web-based dynamic nomograms (graphical representation of predicted OS based on the clinical characteristics that a patient could input into the website). The calibration plot, concordance index and decision curve analysis were employed to assess calibration, discrimination and clinical usefulness of the predictive models. RESULTS: In total, 13 and 15 variables were used to predict OS for pCR and non-pCR patients undergoing neoadjuvant therapy followed by oesophagectomy, respectively. Key predictors included demographic characteristics, pretreatment clinical stage, surgical approach, pathological information and postoperative treatments. The predictive models for pCR and non-pCR patients demonstrated good calibration and clinical utility, with acceptable discrimination that surpassed that of the current tumour, node, metastases staging system. CONCLUSIONS: The web-based dynamic nomograms for pCR (https://predict-survival.shinyapps.io/pCR-eso/) and non-pCR patients (https://predict-survival.shinyapps.io/non-pCR-eso/) developed in this study can facilitate the calculation of OS probability for individual patients undergoing neoadjuvant therapy and radical oesophagectomy, aiding clinicians and patients in making personalised treatment decisions.


Asunto(s)
Neoplasias Esofágicas , Nomogramas , Humanos , Terapia Neoadyuvante , Esofagectomía , Modelos de Riesgos Proporcionales
13.
Am J Physiol Cell Physiol ; 326(5): C1367-C1383, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406826

RESUMEN

Age-related macular degeneration (AMD) is characterized by the degenerative senescence in the retinal pigment epithelium (RPE) and photoreceptors, which is accompanied by the accumulation of iron ions in the aging retina. However, current models of acute oxidative stress are still insufficient to simulate the gradual progression of AMD. To address this, we established chronic injury models by exposing the aRPE-19 cells, 661W cells, and mouse retina to iron ion overload over time. Investigations at the levels of cell biology and molecular biology were performed. It was demonstrated that long-term treatment of excessive iron ions induced senescence-like morphological changes, decreased cell proliferation, and impaired mitochondrial function, contributing to apoptosis. Activation of the mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were confirmed both in the aRPE-19 and 661W cells. Furthermore, iron ion overload resulted in dry AMD-like lesions and decreased visual function in the mouse retina. These findings suggest that chronic exposure to overloading iron ions plays a significant role in the pathogenesis of retinopathy and provide a potential model for future studies on AMD.NEW & NOTEWORTHY To explore the possibility of constructing reliable research carriers on age-related macular degeneration (AMD), iron ion overload was applied to establish models in vitro and in vivo. Subsequent investigations into cellular physiology and molecular biology confirmed the presence of senescence in these models. Through this study, we hope to provide a better option of feasible methods for future researches into AMD.


Asunto(s)
Modelos Animales de Enfermedad , Hierro , Degeneración Macular , Epitelio Pigmentado de la Retina , Animales , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Ratones , Hierro/metabolismo , Ratones Endogámicos C57BL , Apoptosis , Estrés Oxidativo , Línea Celular , Senescencia Celular , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Proliferación Celular , Retina/metabolismo , Retina/patología , Mitocondrias/metabolismo , Mitocondrias/patología
14.
Brain Sci ; 14(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38391727

RESUMEN

Perinatal and neonatal ischemic stroke is a significant cause of cognitive and behavioral impairments. Further research is needed to support models of neonatal ischemic stroke and advance our understanding of the mechanisms of infarction formation following such strokes. We used two different levels of photothrombotic stroke (PTS) models to assess stroke outcomes in neonatal mice. We measured brain damage, dynamic changes in glial cells, and neuronal expression at various time points within two weeks following ischemic injury. Our results from 2,3,5-Triphenyltetrazolium chloride (TTC) staining and immunofluorescence staining showed that in the severe group, a dense border of astrocytes and microglia was observed within 3 days post infarct. This ultimately resulted in the formation of a permanent cortical cavity, accompanied by neuronal loss in the surrounding tissues. In the mild group, a relatively sparse arrangement of glial borders was observed 7 days post infarct. This was accompanied by intact cortical tissue and the restoration of viability in the brain tissue beyond the glial boundary. Additionally, neonatal ischemic injury leads to the altered expression of key molecules such as Aldh1L1 and Olig2 in immature astrocytes. In conclusion, we demonstrated the dynamic changes in glial cells and neuronal expression following different degrees of ischemic injury in a mouse model of PTS. These findings provide new insights for studying the cellular and molecular mechanisms underlying neuroprotection and neural regeneration after neonatal ischemic injury.

15.
BMC Public Health ; 24(1): 610, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408976

RESUMEN

OBJECTIVE: There is currently no widely accepted multidimensional health assessment questionnaire for individuals in the Chinese People Liberation Army (PLA). This study developed a multidimensional health survey questionnaire (Comprehensive Health Self-Assessment Questionnaire, CHSAQ) suitable for personnel in the PLA and conducted a preliminary examination of its reliability, validity, and discriminative ability. METHODS: After 183 items from 32 dimensions were selected to form the initial version of the CHSAQ, three groups of soldiers were selected from May 2022 to April 2023 and completed three survey rounds (with 183, 131, and 55 valid items). The items were screened based on classic test theory. After screening, the final questionnaire entries were formed, the structure of the questionnaire was explored through exploratory factor analysis and confirmatory factor analysis, and its reliability, structural validity, and discriminative ability were evaluated. RESULTS: The final questionnaire consisted of 8 dimensions and 55 items on job satisfaction, anxiety and depression, daily activities, physical function, the otolaryngology system, the integumentary system, sleep disorders, and the visual system. The total cumulative variance contribution rate was 64.648% according to exploratory factor analysis. According to the confirmatory factor analysis, the normed fit index (NFI) was 0.880, and the comparison fit index (CFI) was 0.893 (close to 0.90). The Cronbach's α coefficient of the total questionnaire was 0.970, the split half reliability coefficient was 0.937, and the retest reliability coefficient was 0.902. The results are presented as different pairwise comparisons. CONCLUSION: Our study developed a self-report questionnaire for evaluating the comprehensive health status of personnel in the PLA in accordance with the standard procedure for questionnaire development. Our findings also showed that the CHSAQ for individuals in the PLA has good reliability and structural validity.


Asunto(s)
Pueblos del Este de Asia , Autoevaluación (Psicología) , Humanos , China , Psicometría , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
16.
Biomacromolecules ; 25(3): 1550-1562, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38411008

RESUMEN

Formation of adequate vascular network within engineered three-dimensional (3D) tissue substitutes postimplantation remains a major challenge for the success of biomaterials-based tissue regeneration. To better mimic the in vivo angiogenic and vasculogenic processes, nowadays increasing attention is given to the strategy of functionalizing biomaterial scaffolds with multiple bioactive agents. Aimed at engineering electrospun biomimicking fibers with pro-vasculogenic capability, this study was proposed to functionalize electrospun fibers of polycaprolactone/gelatin (PCL/GT) by cell-free fat extract (CEFFE or FE), a newly emerging natural "cocktail" of cytokines and growth factors extracted from human adipose tissue. This was achieved by having the electrospun PCL/GT fiber surface coated with polydopamine (PDA) followed by PDA-mediated immobilization of FE to generate the pro-vasculogenic fibers of FE-PDA@PCL/GT. It was found that the PDA-coated fibrous mat of PCL/GT exhibited a high FE-loading efficiency (∼90%) and enabled the FE to be released in a highly sustained manner. The engineered FE-PDA@PCL/GT fibers possess improved cytocompatibility, as evidenced by the enhanced cellular proliferation, migration, and RNA and protein expressions (e.g., CD31, vWF, VE-cadherin) in the human umbilical vein endothelial cells (huvECs) used. Most importantly, the FE-PDA@PCL/GT fibrous scaffolds were found to enormously stimulate tube formation in vitro, microvascular development in the in ovo chick chorioallantoic membrane (CAM) assay, and vascularization of 3D construct in a rat subcutaneous embedding model. This study highlights the potential of currently engineered pro-vasculogenic fibers as a versatile platform for engineering vascularized biomaterial constructs for functional tissue regeneration.


Asunto(s)
Indoles , Polímeros , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ratas , Animales , Ingeniería de Tejidos/métodos , Materiales Biocompatibles , Poliésteres/farmacología , Células Endoteliales de la Vena Umbilical Humana
17.
Fam Pract ; 41(3): 360-368, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217367

RESUMEN

BACKGROUND: Lymphoma has become 1 of the 10 most common cancers with increased prevalence in young- and middle-aged adults in China. This poses a tremendous burden on patients and their families and brings great challenges to maintaining the balance of family functioning in young- and middle-aged patients. OBJECTIVE: This cross-sectional study aimed to analyse the influence of resourcefulness on the family functioning of Chinese young- and middle-aged lymphoma patients. METHODS: A total of 172 Chinese young- and middle-aged patients with lymphoma were recruited from the oncology departments of two tertiary hospitals in Zhengzhou, Henan, China. They were invited to complete a survey that included a demographic questionnaire, the Resourcefulness Scale and the Chinese Version Family Adaptability and Cohesion Scale II. Multiple linear regression was used to analyse the related factors for family functioning. RESULTS: The multiple regression analysis revealed that the main influencing factors of family cohesion were resourcefulness (ß = 0.338, 95% CI (0.072, 0.173)), spouse caregiver (ß = 0.376, 95% CI (1.938, 10.395)), and cancer stage (ß = -0.274, 95% CI (-3.219, -1.047)). Resourcefulness (ß = 0.438, 95% CI (0.096, 0.181)), spouse caregiver (ß = 0.340, 95% CI (1.348, 8.363)), and family per capita monthly income (ß = 0.157, 95% CI (0.066, 2.243)) were the influencing factors of family adaptability. CONCLUSIONS: Healthcare professionals and family scholars should value young- and middle-aged lymphoma patients' family functioning throughout the cancer treatment process, and family interventions should be designed by healthcare providers based on patients' resourcefulness. Moreover, healthcare providers need to pay attention to the risk factors of patients' family cohesion and adaptability, such as low family per capita monthly income, and consider employing corresponding measures to help them.


Asunto(s)
Cuidadores , Linfoma , Humanos , Estudios Transversales , China , Masculino , Femenino , Persona de Mediana Edad , Adulto , Encuestas y Cuestionarios , Linfoma/psicología , Cuidadores/psicología , Relaciones Familiares , Adaptación Psicológica , Familia/psicología , Adulto Joven
18.
J Colloid Interface Sci ; 659: 267-275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38176236

RESUMEN

Vanadium-based materials are widely recognized as the primary candidate cathode materials for aqueous Zn-ion batteries (AZIBs). However, slow kinetics and poor stability pose significant challenges for widespread application. Herein, to address these issues, alkali metal ions and polyaniline (PANI) are introduced into layered hydrated V2O5 (VO). Density functional theory calculations reveal that the synthesized (C6H4NH)0.27K0.24V2O5·0.92H2O (KPVO), with K+ and PANI co-intercalation, exhibits a robust interlayer structure and a continuous three-dimensional (3D) electron transfer network. These properties facilitate the reversible diffusion of Zn2+ with a low migration potential barrier and rapid response kinetics. The KPVO cathode exhibits a discharge specific capacity of 418.3 mAh/g at 100 mA/g and excellent cycling stability with 89.5 % retention after 3000 cycles at 5 A/g. This work provides a general strategy for integrating cathode materials to achieve high specific capacity and excellent kinetic performance.

19.
Biomater Adv ; 157: 213751, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219418

RESUMEN

In vascular tissue engineering, formation of stable endothelial cell-cell and cell-substrate adhesions is essential for maintaining long-term patency of the tissue-engineered vascular grafts (TEVGs). In this study, sheet-like aligned fibrous substrates of poly(l-lactide-co-caprolactone) (PLCL) were prepared by electrospinning to provide basement membrane-resembling structural support to endothelial cells (ECs). Cyclic stretching at physiological and pathological levels was then applied to human umbilical vein endothelial cells (HUVECs) cultured on chosen fibrous substrate using a force-loading device, from which effects of the cyclic stretching on cell-cell and cell-substrate adhesions were examined. It was found that applying uniaxial 1 Hz cyclic stretch at physiological levels (5 % and 10 % elongation) strengthened the cell-cell junctions, thus leading to improved structural integrity, functional expression and resistance to thrombin-induced damaging impacts in the formed endothelial layer. The cell-cell junctions were disrupted at pathological level (15 % elongation) cyclic stretching, which however facilitated the formation of focal adhesions (FAs) at cell-substrate interface. Mechanistically, the effects of cyclic stretching on endothelial cell-cell and cell-substrate adhesions were identified to be correlated with the RhoA/ROCK signaling pathway. Results from this study highlight the relevance between applying dynamic mechanical stimulation and maintaining the structural integrity of the formed endothelial layer, and implicate a necessity to implement appropriate dynamic mechanical training (i.e., preconditioning) to obtain tissue-engineered blood vessels with long-term patency post-implantation.


Asunto(s)
Adhesiones Focales , Uniones Intercelulares , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Adhesión Celular , Adhesiones Focales/fisiología , Fenómenos Mecánicos
20.
Clin Epigenetics ; 16(1): 1, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167534

RESUMEN

BACKGROUND: The objective of this study was to examine and analyze differential methylation profiles in order to investigate the influence of hyper-methioninemia (HM) on the development of diabetic nephropathy (DN). Male Wistar rats, aged eight weeks and weighing 250-300 g, were randomly assigned into four groups: a control group (Healthy, n = 8), streptozocin-induced rats (STZ group, n = 8), HM + STZ group (n = 8), and the Tangshen Formula (TSF) treatment group (TSF group, n = 8). Blood glucose levels and other metabolic indicators were monitored before treatment and at four-week intervals until 12 weeks. Total DNA was extracted from the aforementioned groups, and DNA methylation landscapes were analyzed via reduced representative bisulfite sequencing. RESULTS: Both the STZ group and HM + STZ group exhibited increased blood glucose levels and urinary albumin/creatinine ratios in comparison with the control group. Notably, the HM + STZ group exhibited a markedly elevated urinary albumin/creatinine ratio (411.90 ± 88.86 mg/g) compared to the STZ group (238.41 ± 62.52 mg/g). TSF-treated rats demonstrated substantial reductions in both blood glucose levels and urinary albumin/creatinine ratios in comparison with the HM + STZ group. In-depth analysis of DNA methylation profiles revealed 797 genes with potential therapeutic effects related to TSF, among which approximately 2.3% had been previously reported as homologous genes. CONCLUSION: While HM exacerbates DN through altered methylation patterns at specific CpG sites, TSF holds promise as a viable treatment for DN by restoring abnormal methylation levels. The identification of specific genes provides valuable insights into the underlying mechanisms of DN pathogenesis and offers potential therapeutic targets for further investigation.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratas , Masculino , Animales , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Glucemia , Metionina/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacología , Estreptozocina/uso terapéutico , Creatinina/metabolismo , Creatinina/farmacología , Creatinina/uso terapéutico , Ratas Wistar , Metilación de ADN , Riñón/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacología , Albúminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA