Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Transl Int Med ; 12(4): 406-423, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39360160

RESUMEN

Background and Objectives: Actin-related protein 2/3 complex subunit 1B (ARPC1B) is an essential subunit of the actin-related protein 2/3 (Arp2/3) complex. While there have been numerous research reports on Arp2/3 in relation to tumors, there needs to be more research on ARPC1B and its role in tumors, particularly at the pan-cancer level. Methods: Utilizing data from the cancer genome atlas (TCGA) and genotype-tissue expression (GTEx) databases, we analyzed ARPC1B expression differences in normal, tumor, and adjacent tissues, investigating its correlation with prognosis and clinical stages in various cancers. We conducted gene enrichment analysis and explored ARPC1B's connection to the tumor immune microenvironment and its impact on anti-tumor drug resistance. In addition, in vivo and in vitro experiments have also been carried out to find the mechanism of ARPC1B on ovarian cancer (OV) proliferation and invasion. Results: ARPC1B was highly expressed in 33 tumor types, suggesting its role as a tumor-promoting factor. Its expression correlated with poor prognosis and served as a clinical staging marker in over 10 tumor types. ARPC1B is implicated in various biological processes and signaling pathways, uniquely associated with tumor immunity, indicating immunosuppressive conditions in high-expression cases. High ARPC1B expression was linked to resistance to six anti-tumor drugs. Further experiments showed that ARPC1B can affect the proliferation, apoptosis, migration, and invasion of OV cells through the AKT/PI3K/mTOR pathway. Conclusion: ARPC1B is a biomarker for immune suppression, prognosis, clinical staging, and drug resistance, providing new insights for cancer therapeutics.

2.
J Agric Food Chem ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352813

RESUMEN

Fluralaner is a novel insecticide targeting the ionotropic GABA receptor (GABAR) subunit, RDL. A recent study revealed that N316L, a substitution of asparagine (N) with leucine (L), in the second transmembrane (M2)-spanning region reduced the antagonist action of fluralaner on the housefly Musca domestica RDL (MdRDL) in vitro. To verify the impact of N316L in vivo, the corresponding mutation (N318L) in the fruitfly Drosophila melanogaster RDL (DmRDL) was constructed using CRISPR/Cas9 genome editing. The homozygous DmRDLN318L mutant showed a 9.87-fold resistance to fluralaner compared with w1118 while still being highly sensitive to broflanilide and fipronil, which is consistent with those findings observed in the electrophysiology assays of the homomeric DmRDLWT or DmRDLN318L channel. Moreover, DmRDLN318L led to malformed ovaries, stunted eggs, and sterility in homozygous females. These results highlighted N318 as a molecular site for fluralaner in vivo and in vitro and might elucidate the resistance mechanisms of insects against fluralaner.

3.
Front Bioeng Biotechnol ; 12: 1417962, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239258

RESUMEN

The occupancy of the binding pocket by the substrate ultimately determines the outcome of enzyme catalysis. Previous engineering and substrate scope of phenylalanine aminomutase from Taxus chinensis (TcPAM) has generated valuable knowledge about the regioselectivity with biocatalytic potentials for the preparation of α- and ß-phenylalanine and their derivatives. However, the significantly different regioselectivity during the amination of cinnamates by TcPAM is not fully understood. In this study, we take a reconstruction approach to change the whole binding pocket of TcPAM for probing the factors affecting the regioselectivity, resulting in variant C107S/Q319M/I431V reaching a 25.5-fold enhancement of the ß/α product ratio toward trans-cinnamate acid. Furthermore, when substituted cinnamates were used as substrates, the regioselectivity was strongly correlated with various changes in the binding pocket, and value-added 2-Cl-α-Phe (100% α-selectivity) and 4-CH3-ß-Phe (98% ß-selectivity) were individually verified by the mutants L104A and Q319M at a preparative scale, exemplifying the application feasibility of our engineering strategy. The present study uncovered the cooperative connection between aromatic binding and carboxylate binding to affect the regioselectivity, which provides new insights into the determinants of the regioselectivity possessed by TcPAM and paves the way for its biocatalytic applications on phenylalanine derivatives.

4.
Bioresour Technol ; 413: 131453, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251032

RESUMEN

Vegetable waste, rich in bioactive compounds, offers a promising resource for producing value-added products. This study explored the use of tomato waste, containing glucose (40 mg/g), lycopene (95.12 µg/g), and ß-carotene (24.31 µg/g), for cultivating fucoxanthin-rich Isochrysis galbana. Water-soluble lycopene (2.0 µg/mL) and ß-carotene (0.4 µg/mL) effectively upregulated key carotenoid synthesis genes and boosted cell growth and fucoxanthin production (3.64 and 3.60 pg/cell, respectively) within 10 days in a mixotrophic culture. Optimized tomato waste hydrolysate achieved a high cell density of 1.21 × 107 cells/mL, 2.13 g/L biomass, and 21.02 mg/g fucoxanthin. This study highlights the potential of combining tomato waste with microalgae for a novel and innovative approach towards waste management and resource utilization.

5.
Adv Sci (Weinh) ; : e2408522, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303204

RESUMEN

The effective utilization of hydrogen storage materials (HSMs) is hindered by impurity gas poisoning, posing a significant challenge for large-scale applications. This study elucidates the poisoning mechanisms of various impurities gases (CO, CO2, O2, Ar, He, CH4, N2) on ZrCo, Pd, U and LaNi5. Impurities gases are categorized into active and inactive types based on their effecting behaviors and mechanisms on the hydrogenation of HSMs. During the hydrogenation process, active impurities chemically poison the hydrogenation reaction by limiting hydrogen absorption at interface, while inactive impurities physically hinder hydrogenation reaction by impeding hydrogen diffusion in hydrogen-impurity mixed gas. In situ Scanning Tunneling Microscope clarifies these behaviors, and a novel criterion based on hydrogen spontaneous dissociation energy is introduced to explain and predict impurity-substrate interaction characteristics. The novel findings of this work provide a comprehensive framework for designing long-lived HSMs with poisoning resistance, guiding the development of more resilient hydrogen storage systems.

6.
J Biol Chem ; : 107780, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276941

RESUMEN

Resistance to DNA-damaging agents is a major unsolved challenge for breast cancer patients undergoing chemotherapy. Here, we show that elevated expression of transcriptional repressor GATA binding 1 (TRPS1) is associated with lower drug sensitivity, reduced response rate, and poor prognosis in chemotherapy-treated breast cancer patients. Mechanistically, elevated TRPS1 expression promotes hyperactivity of DNA damage repair (DDR) in breast cancer cells. We provide evidence that TRPS1 dynamically localizes to DNA breaks in a Ku70- and Ku80-dependent manner, and that TRPS1 is a new member of the DDR protein family. We also discover that the dynamics of TRPS1 assembly at DNA breaks is regulated by its reversible PARylation in the DDR, and that mutations of the PARylation sites on TRPS1 lead to increased sensitivity to chemotherapeutic drugs. Taken together, our findings provide new mechanistic insights into the DDR and chemoresistance in breast cancer patients and identify TRPS1 as a critical DDR protein. TRPS1 may also be considered as a target to improve chemo-sensitization strategies and, consequently, clinical outcomes for breast cancer patients.

7.
Pestic Biochem Physiol ; 204: 106078, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277391

RESUMEN

Nilaparvata lugens is a notorious rice pest causing significant annual yield and economic losses. The use of entomopathogenic fungi offers a promising and eco-friendly approach to sustainable pest management programs. However, research in this area is currently limited to a few specific types of insects and other arthropods. This study aimed to analyze the biocontrol potential of Lecanicillium attenuatum against N. lugens. Bioassays showed that L. attenuatum 3166 induced >80% mortality in N. lugens following 7 d exposure. Greenhouse and field investigations demonstrated that L. attenuatum 3166 application leads to a substantial reduction in N. lugens populations. Under greenhouse conditions, fluorescence was detected in GFP-labeled L. attenuatum 3166 hyphae enveloping the bodies of N. lugens. In field trials, L. attenuatum 3166 treatment exhibited a control efficacy of up to 68.94% at 14 d post-application, which was comparable to that of the commercial entomopathogenic fungal agent. Genomic sequencing of L. attenuatum 3166 revealed a comprehensive array of genes implicated in its infestation and lethality. Further, the transcriptome sequencing analysis highlighted the elevated expression levels of genes encoding proteases, chitinases, cutinases, and phospholipases. Our findings highlight the potential of L. attenuatum 3166 as an effective biological control agent against N. lugens.


Asunto(s)
Hemípteros , Hypocreales , Oryza , Control Biológico de Vectores , Animales , Oryza/parasitología , Oryza/microbiología , Control Biológico de Vectores/métodos , Hemípteros/genética , Hypocreales/genética , Hypocreales/metabolismo
8.
Chin Med ; 19(1): 131, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327620

RESUMEN

BACKGROUND: Xuefu Zhuyu decoction (XFZYD) has been extensively utilized to treat traumatic brain injury (TBI). However, the bioactive compounds and the underlying mechanisms have not yet been elucidated. OBJECTIVES: This study aimed to investigate the bioactive constituents of XFYZD that are absorbed in the blood and the mechanisms in treating TBI. METHODS: The study presents an integrated strategy in three steps to investigate the material basis and pharmacological mechanisms of XFZYD. The first step involves: (1) performing metabolomics analysis of XFZYD to obtain the main functions and targets; (2) screening the blood-entry ingredients and targets of XFZYD from databases; (3) obtaining the potential components targeting the key functions by integrated analysis of metabolomics and network pharmacology. The second step involves screening pharmacological effects with active ingredients in vitro. In the third step, the effects of the top active compound were validated in vivo, and the mechanisms were explored by protein antagonist experiments. RESULTS: Metabolomics analysis revealed that XFZYD treated TBI mice mainly through affecting the functions of blood vessels. We screened 62 blood-entry ingredients of XFZYD by network pharmacology. Then, we focused on 39 blood-entry ingredients related to vascular genes enriched by XFZYD-responsive metabolites. Performing the natural products library, we verified that hydroxysafflor yellow A (HSYA), vanillin, ligustilide, paeoniflorin, and other substances promoted endothelial cell proliferation significantly compared to the control group. Among them, the efficacy of HSYA was superior. Further animal studies demonstrated that HSYA treatment alleviated neurological dysfunction in TBI mice by mNSS and foot fault test, and decreased neuronal damage by HE, nissl, and TUNEL staining. HSYA increased the density of cerebral microvessels, raised the expression of angiogenesis marker proteins VEGFA and CD34, and activated the PI3K/Akt/mTOR signaling pathway significantly. The angiogenic effects disappeared after the intervention of PI3K antagonist LY294002. CONCLUSION: By applying a novel strategy of integrating network pharmacology of constituents absorbed in blood with metabolomics, the research screened HSYA as one of the top bioactive constituents of XFZYD, which stimulates angiogenesis by activating the PI3K/Akt/mTOR signaling pathway after TBI.

9.
Entropy (Basel) ; 26(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39330065

RESUMEN

Weakly supervised temporal language grounding (TLG) aims to locate events in untrimmed videos based on natural language queries without temporal annotations, necessitating a deep understanding of semantic context across both video and text modalities. Existing methods often focus on simple correlations between query phrases and isolated video segments, neglecting the event-oriented semantic coherence and consistency required for accurate temporal grounding. This can lead to misleading results due to partial frame correlations. To address these limitations, we propose the Event-oriented State Alignment Network (ESAN), which constructs "start-event-end" semantic state sets for both textual and video data. ESAN employs relative entropy for cross-modal alignment through knowledge distillation from pre-trained large models, thereby enhancing semantic coherence within each modality and ensuring consistency across modalities. Our approach leverages vision-language models to extract static frame semantics and large language models to capture dynamic semantic changes, facilitating a more comprehensive understanding of events. Experiments conducted on two benchmark datasets demonstrate that ESAN significantly outperforms existing methods. By reducing false high correlations and improving the overall performance, our method effectively addresses the challenges posed by previous approaches. These advancements highlight the potential of ESAN to improve the precision and reliability of temporal language grounding tasks.

10.
Bioinformatics ; 40(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39240375

RESUMEN

MOTIVATION: Structural variants (SVs) play an important role in genetic research and precision medicine. As existing SV detection methods usually contain a substantial number of false positive calls, approaches to filter the detection results are needed. RESULTS: We developed a novel deep learning-based SV filtering tool, CSV-Filter, for both short and long reads. CSV-Filter uses a novel multi-level grayscale image encoding method based on CIGAR strings of the alignment results and employs image augmentation techniques to improve SV feature extraction. CSV-Filter also utilizes self-supervised learning networks for transfer as classification models, and employs mixed-precision operations to accelerate training. The experiments showed that the integration of CSV-Filter with popular SV detection tools could considerably reduce false positive SVs for short and long reads, while maintaining true positive SVs almost unchanged. Compared with DeepSVFilter, a SV filtering tool for short reads, CSV-Filter could recognize more false positive calls and support long reads as an additional feature. AVAILABILITY AND IMPLEMENTATION: https://github.com/xzyschumacher/CSV-Filter.


Asunto(s)
Aprendizaje Profundo , Humanos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Variación Estructural del Genoma
11.
EClinicalMedicine ; 76: 102816, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39290638

RESUMEN

Background: It is generally recognized that there is unequal mortality in childhood central nervous system (CNS) malignancy in the United States (US), but little is known about the trends and contributors of racial/ethnic disparities in death. We assessed the trends of racial/ethnic disparities in all-cause and cause-specific death, and the contributions of tumour, treatment and socioeconomic factors to this disparity. Methods: This registry-based cohort study included children (aged ≤19 years) diagnosed with malignant CNS tumours, using data from the US population-based cancer registry in the Surveillance, Epidemiology, and End Results (SEER) Program. The clinical outcomes were all-cause and cause-specific death for each racial/ethnic group (White, Black, Hispanic, non-Hispanic Asian/Pacific Islander [API], and non-Hispanic American Indian/Alaska Native [AI/AN] children). We quantified absolute disparities using absolute rate difference in 5-year cumulative incidence of death. Cox proportion risk models were used to estimate the relative racial/ethnic disparities, and the contribution of factors to disparities in death. Findings: In this study, data from 14,510 children with malignant CNS tumours (mean [SD] age, 8.5 [5.7]; 7988 [55.1%] male) were analysed. Overall, the cumulative incidence of death from CNS tumours across four racial/ethnic groups decreased from 2001 to 2020. Black patients had the highest risk of death from all causes and CNS tumours between 2001 and 2020, with adjusted hazard ratios (HR) of 1.52 (1.38-1.68) and 1.47 (1.31-1.64), respectively. The absolute disparity in all-cause death between Hispanic and White patients increased slightly (from 8.2 percentage points [ppt] to 9.4 ppt), and the relative disparity in death from CNS tumours increased from 1.33 (1.15-1.55) in 2001-2005 to 1.78 (1.44-2.20) in 2016-2020. The absolute disparities in death from CNS tumours between Black and White patients (from 11.8 ppt to 4.3 ppt) and between API and White patients (from 10.1 ppt to 5.1 ppt) decreased from 2001-2005 to 2011-2015. Interpretation: Race/ethnicity disparities in death from CNS tumours among childhood malignant CNS tumours had reduced from 2001 to 2020, and quantifying the contribution of factors to this disparity in death could provide a basis for decreasing mortality among racial/ethnic minority patients. Funding: Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program.

12.
Front Nutr ; 11: 1437374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39279893

RESUMEN

CO2 capture by microalgae is a feasible strategy to reduce CO2 emissions. However, large amounts of cell-free supernatant will be produced after microalgal harvesting, which may be harmful to the environment if it is disorderly discharged. In this study, Chlorella vulgaris (C. vulgaris) was cultivated under three common cultivation modes (autotrophic culture (AC), heterotrophic culture (HC) and mixotrophic culture (MC)), and the obtained supernatant was used as fertilizer to investigate its effect on the growth of lettuce. The biomass concentration of C. vulgaris cultivated under MC and HC was 3.25 and 2.59 times that of under AC, respectively. The contents of macronutrients in supernatant obtained from AC were higher than those of MC and HC. However, the contents of amino acids and hormones in supernatant obtained from MC and HC were higher than those of AC. The fresh shoot weight, fresh root weight and root length of lettuce treated with supernatant were significantly higher than that of control treatment. In addition, the contents of chlorophyll, soluble sugar and soluble protein in lettuce treated with supernatant were also higher than that of control treatment. However, the contents of nitrate in lettuce treated with supernatant was lower than that of control treatment. These results showed that the supernatant could promote the growth of lettuce and was a potential of fertilizer for crop planting.

13.
Heliyon ; 10(14): e34457, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148998

RESUMEN

Non-intrusive load monitoring (NILM) can obtain fine-grained power consumption information for individual appliances within the user without installing additional hardware sensors. With the rapid development of the deep learning model, many methods have been utilized to address NILM problems and have achieved enhanced appliance identification performance. However, supervised learning models require a substantial volume of annotated data to function effectively, which is time-consuming, laborious, and difficult to implement in real scenarios. In this paper, we propose a novel semi-supervised learning method that combines consistency regularization and pseudo-labels to help identification of appliances with limited labeled data and an abundance of unlabeled data. In addition, given the different learning difficulties of various appliance categories, for example, feature learning is more difficult for multi-state appliances than two-state appliances, the thresholds employed for different appliances are adjusted in a flexible way at each time step so that the informative unlabeled data and their pseudo-labels can be delivered. Experiments have been conducted on publicly available datasets, and the results indicate that the proposed method attains superior appliance identification performance compared to cutting-edge methods.

14.
Mol Med Rep ; 30(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39129304

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the colony formation assay data shown in Fig. 5F on p. 7 were strikingly similar to data appearing in different form in several other articles written by different authors at different research institutes, which had already been published prior to the  submission of this article to the journal. In addition, possible anomalies were noted regarding the appearance of the western blots in the paper. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 24: 723, 2021; DOI: 10.3892/mmr.2021.12362].

15.
Environ Pollut ; : 124822, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197643

RESUMEN

The accumulation of atrazine in soils can create environmental challenges, potentially posing risks to human health. Superabsorbent hydrogel (SH)-based formulations offer an eco-friendly approach to accelerate herbicide degradation. However, the impact of SHs on soil microbial community structure, and thus on the fate of atrazine, remains uncertain. In this study, a radioactive tracer was employed to investigate the influence of SHs on microbial communities and atrazine transformation in soils. The results revealed that the mineralization of atrazine in active soils was considerably greater than that in sterilized soils. Atrazine degradation proceeded rapidly under SH treatment, indicating the potential of SH to accelerate atrazine degradation. Furthermore, SH addition did not alter the atrazine degradation pathway in soils, which included dealkylation, dechlorination and hydroxylation. The relative abundance of dominant microbial population was influenced by the presence of SHs in the soil. Additionally, SH application led to an increased relative abundance of Lysobacter, suggesting its potential involvement in atrazine degradation. These findings reveal the significance of soil microorganisms and SH in atrazine degradation, offering crucial insights for the development of effective strategies for atrazine remediation and environmental sustainability.

16.
Sci Total Environ ; 951: 175584, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39155004

RESUMEN

Atrazine exhibits adverse effects on diverse organisms in both terrestrial and aquatic environments, even though it effectively targets specific organisms. This study employed superabsorbent hydrogels to coat 14C-atrazine coupled with a four-compartment model to determine the fate of this herbicide in three oxic soils over a 100-day incubation period. Mineralization of atrazine was limited in all soils, with rates remaining below 3.5 %. The encapsulation treatment reduced mineralization of atrazine in soil A and soil B. Bound residues ranged from 26.1 to 43.6 % at 100 d. The encapsulation treatment enhanced the degradation of atrazine and reduced the content of deethylatrazine in soil A, but significantly increased the content of deisopropylatrazine in soil A and hydroxyatrazine in soil C. Using the obtained data, we also constructed a four-compartment model to clarify the relationships among the parent compound, degradation products, bound residues, and mineralization. This model accurately fits the fate of atrazine in the present work. Additionally, the correlation study suggested that both soil parameters and superabsorbent hydrogels played significant roles in influencing atrazine transformation. These findings serve as a reference for evaluating the environmental impact of superabsorbent hydrogels in atrazine pollution reduction and offer a foundational model approach for a comprehensive understanding of organic pollutants.

17.
Sci Total Environ ; 951: 175671, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39168328

RESUMEN

The high moisture content of kitchen waste (KW) restricts the future treatment and resource utilization. Biodrying is an effective approach to remove the water of KW. However, conventional biodrying only uses the heat generated by the indigenous microorganisms to remove water, which has long treatment cycle and low moisture removal rate. Microbial bioaugmentation is an emerging approach to improve the biodrying efficiency of KW. In this study, a thermophilic bacterial agent (TBA) composed of Bacillus, Geobacillus and Acinetobacter was used to promote water evaporation during the biodrying process. Based on the results, the moisture removal rate of experimental group inoculated with TBA was 82.20 %, which was notably higher than CK group without inoculation. Moreover, TBA significantly increased the amount of organic matter degradation. Microbial community analysis revealed that TBA could promote the proliferation of thermophilic bacteria and make bacterial community more tolerant to high temperature environment. Further analysis of metabolic pathways showed that quorum sensing and glyoxylate and dicarboxylate metabolism were enhanced by TBA inoculation, which can help microorganisms to better adapt to high temperature environment and release more energy to facilitate the water evaporation. This study offers a fresh approach to improve the water removal efficiency in biodrying process.


Asunto(s)
Biodegradación Ambiental , Redes y Vías Metabólicas , Microbiota , Bacillus/metabolismo , Bacillus/fisiología , Bacterias/metabolismo , Geobacillus/metabolismo , Geobacillus/fisiología , Eliminación de Residuos Líquidos/métodos , Acinetobacter/metabolismo , Acinetobacter/fisiología
18.
J Agric Food Chem ; 72(34): 18816-18823, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39143896

RESUMEN

The fall armyworm (FAW) is a serious agricultural pest and has developed resistance to multiple insecticides. It is necessary to introduce novel insecticide(s) for controlling FAW. Isocycloseram is a completely novel isoxazoline insecticide. However, its activity and mode of action against FAW have not been reported. In this study, isocycloseram exhibited a higher insecticidal activity (LC50 = 0.26 mg/kg) than fipronil (LC50 = 7.72 mg/kg) against FAW. The median inhibitory concentration (IC50) of isocycloseram (IC50 = 8.52 nM) was almost equal to that of the desmethyl-broflanilide (IC50 = 7.32 nM) to the SfrRDL1 receptor. The IC50 of isocycloseram to the SfrRDL2 receptor was 11.13 nM, which was obviously less than that of desmethyl-broflanilide, dieldrin, fipronil, fluxametamide. Compared with the SfrRDL2 receptor, the SfrRDL1 receptor exhibited higher sensitivity to GABAergic insecticides. The recombinant SfrGluCl receptor was successfully stimulated by l-glutamate; however, the currents were low and weakly inhibited by isocycloseram at 10 µM. In conclusion, our results provided the theoretical basis for usage of GABAergic insecticides for controlling FAW.


Asunto(s)
Proteínas de Insectos , Insecticidas , Animales , Insecticidas/farmacología , Insecticidas/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Spodoptera/efectos de los fármacos , Isoxazoles/farmacología , Pirazoles/farmacología
19.
Adv Sci (Weinh) ; : e2309752, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119903

RESUMEN

The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.

20.
Small ; : e2404545, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128132

RESUMEN

NiFe-based nanomaterials are extensively studied as one of the promising candidates for the oxygen evolution reaction (OER). However, their practical application is still largely impeded by the unsatisfied activity and poor durability caused by the severe leaching of active species. Herein, a rapid and facile combustion method is developed to synthesize the vertical graphene (VG) supported N-doped carbon modified (NixFe1-x)Se composites (NC@(NixFe1-x)Se/VG). The interconnected heterostructure of obtained materials plays a vital role in boosting the catalytic performance, offering rich active sites and convenient pathways for rapid electron and ion transport. The incorporation of Se into NiFe facilitates the formation of active species via in situ surface reconstruction. According to density functional theory (DFT) calculations, the in situ formation of a Ni0.75Fe0.25Se/Ni0.75Fe0.25OOH layer significantly enhances the catalytic activity of NC@(NixFe1-x)Se/VG. Furthermore, the surface-adsorbed selenoxide species contribute to the stabilization of the catalytic active phase and increase the overall stability. The obtained NC@(NixFe1-x)Se/VG exhibits a low overpotential of 220 mV at 20 mA cm-2 and long-term stability over 300 h. This work offers a novel perspective on the design and fabrication of OER electrocatalysts with high activity and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA