Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 332: 118388, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38796069

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: San-Bai Decoction (SBD) is a classic whitening prescription originally recorded in the 'Introduction to Medicine' of the Ming Dynasty. SBD has been known for invigorating Qi and blood, promoting spleen and stomach, whitening skin, and fading melasma. However, its pharmacodynamic material basis and specific mechanism remain unclear. AIM OF THE STUDY: The aim of this study is to clarify the pharmacodynamic material basis of SBD and its mechanism of removing melasma. MATERIALS AND METHODS: The positive and negative ion mass spectrum data of SBD extract were collected by UHPLC-Q-Exactive Orbitrap MS/MS, imported into Compound Discoverer (CD) 3.1 software, matched through the online database, and manually checked. Finally, the in vitro chemical components of SBD were classified. Similarly, the mass spectrum data of SBD in the serum of normal rats and melasma model rats were also analyzed by CD 3.1 software. The in vitro identified Compound file of SBD was imported into the Expected Compounds and the Generate Expected Compounds project was selected. The SBD compounds were then chosen under the Compound Section. All phase I and II reaction types related to SBD components were selected, and the metabolic platform of CD 3.1 software was utilized to process the results and obtain possible metabolites. The metabolites were scored and products with high scores were subsequently screened. According to literature comparison, the final metabolites of SBD in both normal rats and melasma model rats were determined and comprehensively analyzed. The Melasma model rats were constructed through intramuscular injection of progesterone and ultraviolet radiation B (UVB) irradiation. The preventing and treating effect of SBD on melasma were evaluated by regulating inflammation, epidermal collagen content, and oxidative stress. Additionally, the effect of SBD on the Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt)/Glycogen synthase kinase 3ß (GSK3ß) pathway was investigated through Western blot (WB) to explore its underlying mechanism on whitening and removing melasma efficacy. RESULTS: Ultimately, 94 components were identified in SBD, including 41 flavonoids, 27 organic acids, and 9 glycosides, 3 terpenoids, 2 amides, 2 aldehydes, 1 phenylpropanoid and 9 other compounds. In the blood of normal rat group, a total of 24 prototype components and 61 metabolites were identified. Similarly, there were19 prototype components and 44 metabolites identified from the blood of melasma model rats. Pharmacodynamic experiment results indicated that SBD effectively reduced the incidence of melasma, prevent the loss of epidermal collagen, and elevate the activity of superoxide dismutase and decrease the malondialdehyde content in both liver and skin. Interestingly, the WB results demonstrated that SBD effectively activated PI3K/Akt/GSK3ß pathway, and down-regulated the expression of melanin-related proteins. CONCLUSIONS: For the first time, the components of SBD extracts, and its prototype components and metabolites in the blood of normal rats and melasma model rats were successfully identified by high-resolution liquid chromatography-mass spectrometry with CD software. Additionally, the differences of in vivo components of SBD between normal rats and melasma model rats were analyzed. The preventive and therapeutic effect of SBD on melasma was verified in the melasma model rats induced by progesterone and UVB irradiation, and its mechanism was related to activating PI3K/Akt/GSK3ß pathway and downregulating the expression of melanin-related proteins. These results provide an experimental foundation for further research on the pharmacodynamic substance basis and pharmacodynamic mechanism of SBD, as well as developing new anti-melasma formula with SBD.


Asunto(s)
Medicamentos Herbarios Chinos , Melanosis , Ratas Sprague-Dawley , Animales , Melanosis/tratamiento farmacológico , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Masculino , Modelos Animales de Enfermedad , Femenino , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Preparaciones para Aclaramiento de la Piel/farmacología
2.
J Ethnopharmacol ; 329: 118145, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582153

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic famous prescription that has been utilized for centuries to address dementia. New investigations have shown that the anti-dementia effect of KXS is connected with improved neuroinflammation. Nevertheless, the underlying mechanism is not well elucidated. AIM OF THE STUDY: We propose to discover the ameliorative impact of KXS on Alzheimer's disease (AD) and its regulatory role on the mitochondrial autophagy-nod-like receptor protein 3 (NLRP3) inflammasome pathway. MATERIALS AND METHODS: The Y maze, Morris water maze, and new objection recognition tests were applied to ascertain the spatial learning and memory capacities of amyloid precursor protein/presenilin 1 (APP/PS1) mice after KXS-treatment. Meanwhile, the biochemical indexes of the hippocampus were detected by reagent kits. The pathological alterations and mitochondrial autophagy in the mice' hippocampus were detected utilizing hematoxylin and eosin (H&E), immunohistochemistry, immunofluorescence staining, and transmission electron microscopy. Besides, the PTEN-induced putative kinase 1 (PINK1)/Parkin and NLRP3 inflammasome pathways protein expressions were determined employing the immunoblot analysis. RESULTS: The results of behavioral tests showed that KXS significantly enhanced the AD mice' spatial learning and memory capacities. Furthermore, KXS reversed the biochemical index levels and reduced amyloid-ß protein deposition in AD mice brains. Besides, H&E staining showed that KXS remarkably ameliorated the neuronal damage in AD mice. Concurrently, the results of transmission electron microscopy suggest that KXS ameliorated the mitochondrial damage in microglia and promoted mitochondrial autophagy. Moreover, the immunofluorescence outcomes exhibited that KXS promoted the expression of protein 1 light chain 3B (LC3B) associated with microtubule and the generation of autophagic flux. Notably, the immunofluorescence co-localization results confirmed the presence of mitochondrial autophagy in microglia. Finally, KXS promoted the protein expressions of the PINK1/Parkin pathway and reduced the activation of NLRP3 inflammasome. Most importantly, these beneficial effects of KXS were attenuated by the mitochondrial autophagy inhibitor chloroquine. CONCLUSION: KXS ameliorates AD-related neuropathology and cognitive impairment in APP/PS1 mice by enhancing the mitochondrial autophagy and suppressing the NLRP3 inflammasome pathway.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Disfunción Cognitiva , Medicamentos Herbarios Chinos , Inflamasomas , Ratones Transgénicos , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Ratones , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad , Presenilina-1/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Transducción de Señal/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas
3.
Eur J Pharm Sci ; 192: 106664, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061662

RESUMEN

Paeoniflorin (PF) and glycyrrhizic acid (GL) have skin beautifying effects of anti-inflammation, anti-oxidation, inhibition of melanin formation, and reduction of skin pigmentation. To improve the transdermal permeability of PF and GL in transdermal drug delivery system (TDDS) and enhance their anti-melasma efficacy, PF-GL transethosome (PF-GL-TE) was prepared by ethanol injection method, and finally gelled with carbomer-940 to form PF-GL-TE gel. Consequently, the obtained PF-GL-TE is small and uniform, with an average particle size and a PDI value of about 167.9 nm and 0.102. PF-GL-TE gel showed sustained release behavior and high transdermal permeability in vitro release and transdermal tests. Meanwhile, PF-GL-TE gel played significant preventive effects on melasma induced by progesterone injection and ultraviolet radiation B (UVB) irradiation. According to the results of H&E staining and Masson staining of rat skin, PF-GL-TE gel can alleviate the skin inflammation of and reduce the loss of collagen fibers of back skin in the melasma model rats. Compared with the PF-GL mixture gel, PF-GL-TE gel significantly attenuated the oxidative damage of liver and skin by increasing the activity of SOD and reducing the content of MDA. The results of Western blot showed that PF-GL-TE gel might down-regulate melanin-related proteins expressions of MITF/TYR/TRP1 and TRP2 to prevent and treat melasma. These findings indicate that PF-GL-TE gel is an effective TDDS for delivering PF and GL into the skin, providing a promising preparation for effective prevention and treatment of melasma.


Asunto(s)
Ácido Glicirrínico , Melanosis , Ratas , Animales , Ácido Glicirrínico/uso terapéutico , Melaninas , Rayos Ultravioleta , Melanosis/tratamiento farmacológico , Melanosis/prevención & control
4.
Front Pharmacol ; 14: 1270836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38205371

RESUMEN

Background: Kai-Xin-San (KXS) is one of the classic famous traditional Chinese medicine prescriptions for amnesia, which has been applied for thousands of years. Modern pharmacological research has found that KXS has significant therapeutic efficacy on nervous system diseases, which is related to its antioxidant activity. However, the antioxidant material basis and quality markers (Q-makers) of KXS have not been studied. Objective: The objective of this study is to explore the Q-makers of antioxidant activity of KXS based on spectrum-effect relationship. Methods: Specifically, the metabolites in KXS extracts were identified by UPLC-Q-Exactive Orbitrap MS/MS. The fingerprint profile of KXS extracts were established by high-performance liquid chromatography (HPLC) and seven common peaks were identified. Meanwhile, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test was used to evaluate the free radical scavenging ability of KXS. The spectrum-effect relationship between its HPLC fingerprint and DPPH free radical scavenging activity was preliminarily examined by the Pearson correlation analysis, grey relation analysis (GRA), and orthogonal partial least squares discrimination analysis (OPLS-DA). Further, the antioxidant effect of KXS and its Q-makers were validated through human neuroblastoma (SH-SY5Y) cells experiment. Results: The results showed that 103 metabolites were identified from KXS, and the similarity values between HPLC fingerprint of twelve batches of KXS were greater than 0.900. At the same time, the results of Pearson correlation analysis showed that the peaks 8, 1, 14, 17, 18, 24, 16, 21, 15, 13, 6, 5, and 3 from KXS were positively correlated with the scavenging activity values of DPPH. Combined with the results of GRA and OPLS-DA, peaks 1, 3, 5 (Sibiricose A6), 6, 13 (Ginsenoside Rg1), 15, and 24 in the fingerprints were screen out as the potential Q-makers of KXS for antioxidant effect. Besides, the results of CCK-8 assay showed that KXS and its Q-makers remarkably reduced the oxidative damage of SH-SY5Y cells caused by H2O2. However, the antioxidant activity of KXS was decreased significantly after Q-makers were knocked out. Conclusion: In conclusion, the metabolites in KXS were successfully identified by UPLC-Q-Exactive Orbitrap MS/MS, and the Q-makers of KXS for antioxidant effect was analyzed based on the spectrum-effect relationship. These results are beneficial to clarify the antioxidant material basis of KXS and provide the quality control standards for new KXS products development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA