Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Small Methods ; : e2400557, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953303

RESUMEN

Covalent organic framework (COF) materials, known for their robust porous character, sustainability, and abundance, have great potential as cathodes for aqueous Zn-ion batteries (ZIBs). However, their application is hindered by low reversible capacity and discharge voltage. Herein, a donor-acceptor configuration COF (NT-COF) is utilized as the cathode for ZIBs. The cell exhibits a high discharge voltage plateau of ≈1.4 V and a discharge capacity of 214 mAh g-1 at 0.2 A g-1 when utilizing the Mn2+ electrolyte additive in the ZnSO4 electrolyte. A synergistic combination mechanism is proposed, involving the deposition/dissolution reactions of Zn4SO4(OH)6·4H2O and the co-(de)insertion reactions of H+ and SO4 2- in NT-COF. Meanwhile, the NT-COF with a donor-acceptor configuration facilitates efficient generation and separation of electron-hole pairs upon light exposure, thereby enhancing electrochemical reactions within the battery. This leads to a reduction in charging voltage and internal overvoltage, ultimately minimizing electricity consumption. Under ambient weather conditions, the cell exhibits an average discharge capacity of 430 mAh g-1 on sunny days and maintains consistent cycling stability for a duration of 200 cycles (≈19 days) at 0.2 A g-1. This research inspires the advancement of Zn-organic batteries for high-energy-density aqueous electrochemical energy storage systems or photo-electrochemical batteries.

2.
Angew Chem Int Ed Engl ; : e202407659, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842476

RESUMEN

The further development of aqueous zinc (Zn)-ion batteries (AZIBs) is constrained by the high freezing points and the instability on Zn anodes. Current improvement strategies mainly focus on regulating hydrogen bond (HB) donors (H) of solvent water to disrupt HBs, while neglecting the environment of HB-acceptors (O). Herein, we propose a mechanism of chaotropic cation-regulated HB-acceptor via a "super hydrous solvated" structure. Chaotropic Ca2+ can form a solvated structure via competitively binding O atoms in H2O, effectively breaking the HBs among H2O molecules, thereby reducing the freezing point of hybrid 1 mol L-1 (M) ZnCl2 + 4 M CaCl2 electrolyte (-113.2 °C). Meanwhile, the high hydratability of Ca2+ contributes to the water-poor solvated structure of Zn2+, suppressing side reactions and uneven Zn deposition. Benefiting from the anti-freezing electrolyte and high reversible Zn anode, the Zn||Pyrene-4,5,9,10-tetraone (PTO) batteries deliver an ultrahigh capacity of 183.9 mAh g-1 at 1.0 A g-1 over 1600-time stable cycling at -60 °C. This work presents a cheap and efficient aqueous electrolyte to simultaneously improve low-temperature performances and Zn stability, broadening the design concepts for antifreeze electrolytes.

3.
Nanomicro Lett ; 16(1): 46, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064010

RESUMEN

Organic compounds have the advantages of green sustainability and high designability, but their high solubility leads to poor durability of zinc-organic batteries. Herein, a high-performance quinone-based polymer (H-PNADBQ) material is designed by introducing an intramolecular hydrogen bonding (HB) strategy. The intramolecular HB (C=O⋯N-H) is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine, which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory. In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles, enabling high durability at different current densities. Specifically, the H-PNADBQ electrode with high loading (10 mg cm-2) performs a long cycling life at 125 mA g-1 (> 290 cycles). The H-PNADBQ also shows high rate capability (137.1 mAh g-1 at 25 A g-1) due to significantly improved kinetics inducted by intramolecular HB. This work provides an efficient approach toward insoluble organic electrode materials.

4.
Small Methods ; : e2300688, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712198

RESUMEN

Aqueous non-metallic ion batteries have attracted much attention in recent years owing to their fast kinetics, long cycle life, and low manufacture cost. Organic compounds with flexible structural designability are promising electrode materials for aqueous non-metallic ion batteries. In this review, the recent progress of organic electrode materials is systematically summarized for aqueous non-metallic ion batteries with the focus on the interaction between non-metallic ion charge carriers and organic electrode host materials. Both the cations (proton, ammonium ion, and methyl viologen ions) and anions (chloridion, sulfate ion, perchlorate ion, trifluoromethanesulfonate and trifluoromethanesulfonimide ion) storage are discussed. Moreover, the design strategies toward improving the comprehensive performance of organic electrode materials in aqueous non-metallic ion batteries will be summarized. More organic electrode materials with new reaction mechanisms need to be explored to meet the diverse demands of aqueous non-metallic ion batteries with different charge carriers in the future. This review provides insights into developing high-performance organic electrodes for aqueous non-metallic ion batteries.

5.
Angew Chem Int Ed Engl ; 62(43): e202310761, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37668230

RESUMEN

Despite carbonate electrolytes exhibiting good stability to sulfurized polyacrylonitrile (SPAN), their chemical incompatibility with lithium (Li) metal anode leads to poor electrochemical performance of Li||SPAN full cells. While the SPAN employs conventional ether electrolytes that suffer from the shuttle effect, leading to rapid capacity fading. Here, we tailor a dilute electrolyte based on a low solvating power ether solvent that is both compatible with SPAN and Li metal. Unlike conventional ether electrolytes, the weakly solvating ether electrolyte enables SPAN to undergo reversibly "solid-solid" conversion. It features an anion-rich solvation structure that allows for the formation of a robust cathode electrolyte interphase on the SPAN, effectively blocking the dissolution of polysulfides into the bulk electrolyte and avoiding the shuttle effect. What's more, the unique electrolyte chemistry endowed Li ions with fast electroplating kinetics and induced high reversibility Li deposition/stripping process from 25 °C to -40 °C. Based on tailored electrolyte, Li||SPAN full cells matched with high loading SPAN cathodes (≈3.6 mAh cm-2 ) and 50 µm Li foil can operate stably over a wide range of temperatures. Additionally, Li||SPAN pouch cell under lean electrolyte and 5 % excess Li conditions can continuously operate stably for over a month.

6.
Angew Chem Int Ed Engl ; 62(25): e202304503, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37070620

RESUMEN

Aqueous zinc batteries (AZBs) feature high safety and low cost, but intricate anodic side reactions and dendrite growth severely restrict their commercialization. Herein, ethylenediaminetetraacetic acid (EDTA) grafted metal organic framework (MOF-E) is proposed as a dually-functional anodic interphase for sustainable Zn anode. Specifically, the target-distributed EDTA serves as an ion-trapped tentacle to accelerate the desolvation and ionic transport by powerful chemical coordination, while the MOFs offer suitable ionic channels to induce oriented deposition. As a result, MOF-E interphase fundamentally suppresses side reactions and guides horizontally arranged Zn deposition with (002) preferred orientations. The Zn|MOF-E@Cu cell exhibits a markedly improved Coulombic efficiency of 99.7 % over 2500 cycles, and the MOF-E@Zn|KVOH (KV12 O30-y ⋅ nH2 O) cell yields a steady circulation of 5000 cycles@90.47 % at 8 A g-1 .


Asunto(s)
Estructuras Metalorgánicas , Zinc , Ácido Edético , Suministros de Energía Eléctrica , Electrodos , Transporte Iónico
7.
Nanomicro Lett ; 15(1): 36, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36637697

RESUMEN

Novel small sulfur heterocyclic quinones (6a,16a-dihydrobenzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone (4S6Q) and benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,9,14,18-tetraone (4S4Q)) are developed by molecule structural design method and as cathode for aqueous zinc-organic batteries. The conjugated thioether (-S-) bonds as connected units not only improve the conductivity of compounds but also inhibit their dissolution by both extended π-conjugated plane and constructed flexible molecular skeleton. Hence, the Zn//4S6Q and Zn//4S4Q batteries exhibit satisfactory electrochemical performance based on 3.5 mol L-1 (M) Zn(ClO4)2 electrolyte. For instance, the Zn//4S6Q battery obtains 240 and 208.6 mAh g-1 of discharge capacity at 150 mA g-1 and 30 A g-1, respectively. The excellent rate capability is ascribed to the fast reaction kinetics. This system displays a superlong life of 20,000 cycles with no capacity fading at 3 A g-1. Additionally, the H+-storage mechanism of the 4S6Q compound is demonstrated by ex situ analyses and density functional theory calculations. Impressively, the battery can normally work at - 60 °C benefiting from the anti-freezing electrolyte and maintain a high discharge capacity of 201.7 mAh g-1, which is 86.2% of discharge capacity at 25 °C. The cutting-edge electrochemical performances of these novel compounds make them alternative electrode materials for Zn-organic batteries.

8.
Angew Chem Int Ed Engl ; 62(9): e202217671, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36592001

RESUMEN

Electrolyte freezing under low temperatures is a critical challenge for the development of aqueous batteries (ABs). While lowering the freezing point of the electrolyte has caught major research efforts, limited attention has been paid to the structural evolution during the electrolyte freezing process and regulating the frozen electrolyte structure for low temperature ABs. Here, we reveal the formation process of interconnected liquid regions for ion transport in frozen electrolytes with various in situ variable-temperature technologies. More importantly, the low-temperature performance of ABs was significantly improved with the colloidal electrolyte design using graphene oxide quantum dots (GOQDs), which effectively inhibits the growth of ice crystals and expands the interconnected liquid regions for facial ion transport. This work provides new insights and a promising strategy for the electrolyte design of low-temperature ABs.

9.
Angew Chem Int Ed Engl ; 62(9): e202217710, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36527307

RESUMEN

High-capacity small organic materials are plagued by their high solubility. Here we proposed constructing hydrogen bond networks (HBN) via intermolecular hydrogen bonds to suppress the solubility of active material. The illustrated 2, 7- diamino-4, 5, 9, 10-tetraone (PTO-NH2 ) molecule with intermolecular hydrogen (H) bond between O in -C=O and H in -NH2 , which make PTO-NH2 presents transverse two-dimensional extension and longitudinal π-π stacking structure. In situ Fourier transform infrared spectroscopy (FTIR) has tracked the reversible evolution of H-bonds, further confirming the existence of HBN structure can stabilize the intermediate 2-electron reaction state. Therefore, PTO-NH2 with HBN structure has higher active site utilization (95 %), better cycle stability and rate performance. This study uncovers the H-bond effect and evolution during the electrochemical process and provides a strategy for materials design.

10.
Nano Lett ; 22(22): 9107-9114, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36317840

RESUMEN

The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to alleviate excessive CO2 levels in the atmosphere and produce value-added feedstocks and fuels. However, the synthesis of high-efficiency and robust electrocatalysts remains a great challenge. This work reports the green preparation of surface-oxygen-rich carbon-nanorod-supported bismuth nanoparticles (SOR Bi@C NPs) for an efficient CO2RR toward formate. The resultant SOR Bi@C NPs catalyst displays a Faradaic efficiency of more than 91% for formate generation over a wide potential range of 440 mV. Ex situ XPS and XANES and in situ Raman spectroscopy demonstrate that the Bi-O/Bi (110) structure in the pristine SOR Bi@C NPs can remain stable during the CO2RR process. DFT calculations reveal that the Bi-O/Bi (110) structure can facilitate the formation of the *OCHO intermediate. This work provides an approach to the development of high-efficiency Bi-based catalysts for the CO2RR and offers a unique insight into the exploration of advanced electrocatalysts.

11.
ACS Appl Mater Interfaces ; 14(42): 47747-47757, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36250578

RESUMEN

Increasing generation of permanent magnet waste has resulted in an urgent need to preserve finite resources. Reforming these wastes as feedstock to produce renewables is an ideal strategy for addressing waste and energy challenges. Herein, our work reports a smart and sustainable strategy to convert iron in magnet wastes into Prussian blue analogues that can serve as cathode materials for sodium-ion batteries. Moreover, a method to control feed rates is proposed to generate high-quality materials with fewer [Fe(CN)6] vacancies at a feed rate of 3 mL min-1. The recycled Na1.46Fe[Fe(CN)6]0.85·â–¡0.15 shows low vacancies and excellent cycling stability over 300 cycles (89% capacity retention at 50 mA g-1). In operando, evidence indicates that high-quality Prussian blue allows fast sodium-ion mobility and a high degree of reversibility over the course of cycling, although with a three-phase-transition mechanism. This study opens up a future direction for magnet waste created with the expectation of being environmentally reused.

12.
Angew Chem Int Ed Engl ; 61(39): e202207927, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35924827

RESUMEN

For lithium (Li) metal batteries, the decrease in operating temperature brings severe safety issues by more disordered Li deposition. Here, we demonstrate that the solvating power of solvent is closely related to the reversibility of the Li deposition/stripping process under low-temperature conditions. The electrolyte with weakly solvating power solvent shows lower desolvation energy, allowing for a uniform Li deposition morphology, as well as a high deposition/stripping efficiency (97.87 % at -40 °C). Based on a weakly solvating electrolyte, we further built a full cell by coupling the Li metal anode with a sulfurized polyacrylonitrile electrode at a low anode-to-cathode capacity ratio for steady cycling at -40 °C. Our results clarified the relationship between solvating power of solvent and Li deposition behavior at low temperatures.

13.
Angew Chem Int Ed Engl ; 61(12): e202117511, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35064728

RESUMEN

Elaborate molecular design on cathodes is of great importance for rechargeable aqueous zinc-organic batteries' performance elevation. Herein, we design a novel orthoquinone-based covalent organic framework with an ordered channel structures (BT-PTO COF) cathode for an ultrahigh performance aqueous zinc-organic battery. The ordered channel structure facilitates ions transfer and makes the COF follow a redox pseudocapacitance mechanism. Thus, it delivers a high reversible capacity of 225 mAh g-1 at 0.1 A g-1 and an exceptional long-term cyclability (retention rate 98.0 % at 5 A g-1 (≈18 C) after 10 000 cycles). Moreover, a co-insertion mechanism with Zn2+ first followed by two H+ is uncovered for the first time. Significantly, this co-insertion behaviour evolves to more H+ insertion routes at high current density and gives the COF ultra-fast kinetics thus it achieves unprecedented specific power of 184 kW kg-1 (COF) and a high energy density of 92.4 Wh kg-1 (COF) . Our work reports a superior organic material for zinc batteries and provides a design idea for future high-performance organic cathodes.

14.
Small ; 18(12): e2107115, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35098639

RESUMEN

Manganese oxides are highly desirable for the cathode of rechargeable aqueous zinc ion batteries (AZIBs) owing to their low cost and high abundance. However, the terrible structure stability of manganese oxide limits its practical application. Here, it is demonstrated that the hydrogen-bond shielding effect can improve the electrochemical performance of manganese oxide. Briefly, (NH4 )0.125 MnO2 (NHMO) is prepared by introducing NH4 + into the tunnel structure of α-MnO2 . The robust hydrogen bonds between N-H and host O atoms can stabilize the lattice structure of α-MnO2 and suppress the dissolution of Mn element. More importantly, it can also accelerate ions mobility kinetics by weakening the electrostatic interaction of host O atoms. Thus, the fabricated Zn||NHMO battery possesses impressive cycling life (99.5% of capacity retention over 10 000 cycles) and rate capability (109 mA h g-1 of discharge capacity at 6000 mA g-1 ). Comprehensive analyses reveal the essences of interfacial charge and bulk ions transfer. This finding opens new opportunities for the development of high-performance AZIBs.

15.
Small Methods ; 5(8): e2100367, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34927865

RESUMEN

Bipolar electroactive organic molecules receive an increasing research attention as electrode materials for rechargeable batteries due to their flexibility, controllability, and environmental friendliness. While its application for symmetric aqueous proton batteries is still in its infancy. Herein, a symmetric aqueous proton battery (APB) based on a bipolar poly(aminoanthraquinone) (PNAQ) is developed. The conductivity and solubility of PNAQ are significantly improved by introducing a polyaniline-like skeleton. It is demonstrated that the quinone-based moieties allow H+ reversible uptake/removal and the benzene ring-based units achieve HSO4 - adsorption/desorption. The fabricated symmetric APB exhibits a high discharge capacity of 85.3 mA h g-1 at 5 C and excellent rate performance (77 mA h g-1 at 100 C). The good rate performance benefits from capacitance-like ions diffusion mechanism. Furthermore, surprisingly, the system can also operate at -70 °C and shows superior electrochemical performance (60.4 mA h g-1 at -70 °C).

16.
ACS Appl Mater Interfaces ; 13(43): 51048-51056, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672626

RESUMEN

The water-in-salt electrolyte (WISE) features intimate interactions between a cation and anion, which induces the formation of an anion-derived solid electrolyte interphase (SEI) and expands the aqueous electrolyte voltage window to >3.0 V. Although further increasing the salt concentration (even to >60 molality (m)) can gradually improve water stability, issues about cost and practical feasibility are concerned. An alternative approach is to intensify ion-solvent interactions in the inner solvation structure by shielding off outward electrostatic attractions from nearby ions. Here, we design an "overcrowded" electrolyte using the non-polar, hydrogen-bonding 1,4-dioxane (DX) as an overcrowding agent, thereby achieving a robust LiF-enriched SEI and wide electrolyte operation window (3.7 V) with a low salt concentration (<2 m). As a result, the electrochemical performance of aqueous Li4Ti5O12/LiMn2O4 full cells can be substantially improved (88.5% capacity retention after 200 cycles, at 0.57 C). This study points out a promising strategy to develop low-cost and stable high-voltage aqueous batteries.

17.
Nanomicro Lett ; 13(1): 204, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625857

RESUMEN

Although aqueous zinc-ion batteries have gained great development due to their many merits, the frozen aqueous electrolyte hinders their practical application at low temperature conditions. Here, the synergistic effect of cation and anion to break the hydrogen-bonds network of original water molecules is demonstrated by multi-perspective characterization. Then, an aqueous-salt hydrates deep eutectic solvent of 3.5 M Mg(ClO4)2 + 1 M Zn(ClO4)2 is proposed and displays an ultralow freezing point of - 121 °C. A high ionic conductivity of 1.41 mS cm-1 and low viscosity of 22.9 mPa s at - 70 °C imply a fast ions transport behavior of this electrolyte. With the benefits of the low-temperature electrolyte, the fabricated Zn||Pyrene-4,5,9,10-tetraone (PTO) and Zn||Phenazine (PNZ) batteries exhibit satisfactory low-temperature performance. For example, Zn||PTO battery shows a high discharge capacity of 101.5 mAh g-1 at 0.5 C (200 mA g-1) and 71 mAh g-1 at 3 C (1.2 A g-1) when the temperature drops to - 70 °C. This work provides an unique view to design anti-freezing aqueous electrolyte.

18.
ACS Appl Mater Interfaces ; 13(1): 391-399, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33395249

RESUMEN

It is difficult to achieve higher energy density with the existing system of lithium (Li)-ion batteries. As a powerful candidate, Li metal batteries are in the renaissance. Unfortunately, the uncontrolled growth process of Li dendrites has limited their actual application. Hence, inhibiting the formation and spread of Li dendrites has become an enormous challenge. Herein, a novel composite separator is developed with functionalized boron nitride nanosheet modification layer as a Li-ion regulator to regulate Li-ion fluxes. The composite separator contains abundant polar groups and nanoscale channels and could achieve uniform electrochemical deposition via the lithiophilic effect and shunting action. Under the synergy influence of the lithiophilic effect and shunting action, Li dendrites are effectively suppressed. As proof, the Li||Li symmetrical cells with composite separators can circulate steadily for a long time under high current densities (10 mA cm-2, 800 h). Moreover, the LiFePO4||Li full cells display excellent long cycling performance (82% retention after 800 cycles).

20.
Small ; 16(17): e2000597, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32249537

RESUMEN

Aqueous zinc-ion batteries are promising candidates for grid-scale energy storage because of their intrinsic safety, low cost, and high energy intensity. However, lack of suitable cathode materials with both excellent rate performance and cycling stability hinders further practical application of aqueous zinc-ion batteries. Here, a nanoflake-self-assembled nanorod structure of Ca0.28 MnO2 ·0.5H2 O as Zn-insertion cathode material is designed. The Ca0.28 MnO2 ·0.5H2 O exhibits a reversible capacity of 298 mAh g-1 at 175 mA g-1 and long-term cycling stability over 5000 cycles with no obvious capacity fading, which indicates that the per-insertion of Ca ions and water can significantly improve reversible insertion/extraction stability of Zn2+ in Mn-based layered type material. Further, its charge storage mechanism, especially hydrogen ions, is elucidated. A comprehensive study suggests that the intercalation of hydrogen ions in the first discharge plat is controled by both pH value and type of anion of electrolyte. Further, it can stabilize the Ca0.28 MnO2 ·0.5H2 O cathode and facilitate the following insertion of Zn2+ in 1 m ZnSO4 /0.1 m MnSO4 electrolyte. This work can enlighten and promote the development of high-performance rechargeable aqueous zinc-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA