Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Clin Invest ; 134(13)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722697

RESUMEN

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.


Asunto(s)
Proliferación Celular , Mitocondrias Cardíacas , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Ratones Noqueados , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/genética , Glucosa/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474152

RESUMEN

Necroptosis, a form of necrosis, and alterations in mitochondrial dynamics, a coordinated process of mitochondrial fission and fusion, have been implicated in the pathogenesis of cardiovascular diseases. This study aimed to determine the role of mitochondrial morphology in canonical necroptosis induced by a combination of TNFα and zVAD (TNF/zVAD) in H9c2 cells, rat cardiomyoblasts. Time-course analyses of mitochondrial morphology showed that mitochondria were initially shortened after the addition of TNF/zVAD and then their length was restored, and the proportion of cells with elongated mitochondria at 12 h was larger in TNF/zVAD-treated cells than in non-treated cells (16.3 ± 0.9% vs. 8.0 ± 1.2%). The knockdown of dynamin-related protein 1 (Drp1) and fission 1, fission promoters, and treatment with Mdivi-1, a Drp-1 inhibitor, had no effect on TNF/zVAD-induced necroptosis. In contrast, TNF/zVAD-induced necroptosis was attenuated by the knockdown of mitofusin 1/2 (Mfn1/2) and optic atrophy-1 (Opa1), proteins that are indispensable for mitochondrial fusion, and the attenuation of necroptosis was not canceled by treatment with Mdivi-1. The expression of TGFß-activated kinase (TAK1), a negative regulator of RIP1 activity, was upregulated and the TNF/zVAD-induced RIP1-Ser166 phosphorylation, an index of RIP1 activity, was mitigated by the knockdown of Mfn1/2 or Opa1. Pharmacological TAK1 inhibition attenuated the protection afforded by Mfn1/2 and Opa1 knockdown. In conclusion, the inhibition of mitochondrial fusion increases TAK1 expression, leading to the attenuation of canonical necroptosis through the suppression of RIP1 activity.


Asunto(s)
Dinámicas Mitocondriales , Necroptosis , Ratas , Animales , Regulación hacia Abajo , Necrosis/metabolismo , Mitocondrias/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Mol Cell Biochem ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386218

RESUMEN

Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.

4.
Sci Rep ; 14(1): 1365, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228650

RESUMEN

It has been reported that autophagic activity is disturbed in the skeletal muscles of dystrophin-deficient mdx mice and patients with Duchenne muscular dystrophy (DMD). Transcriptional regulations of autophagy by FoxO transcription factors (FoxOs) and transcription factor EB (TFEB) play critical roles in adaptation to cellular stress conditions. Here, we investigated whether autophagic activity is dysregulated at the transcription level in dystrophin-deficient muscles. Expression levels of autophagy-related genes were globally decreased in tibialis anterior and soleus muscles of mdx mice compared with those of wild-type mice. DNA microarray data from the NCBI database also showed that genes related to autophagy were globally downregulated in muscles from patients with DMD. These downregulated genes are known as targets of FoxOs and TFEB. Immunostaining showed that nuclear localization of FoxO1 and FoxO3a was decreased in mdx mice. Western blot analyses demonstrated increases in phosphorylation levels of FoxO1 and FoxO3a in mdx mice. Nuclear localization of TFEB was also reduced in mdx mice, which was associated with elevated phosphorylation levels of TFEB. Collectively, the results suggest that autophagy is disturbed in dystrophin-deficient muscles via transcriptional downregulation due to phosphorylation-mediated suppression of FoxOs and TFEB.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Animales , Ratones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Autofagia/genética , Modelos Animales de Enfermedad
5.
Elife ; 122023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728319

RESUMEN

Sirtuins (SIRT) exhibit deacetylation or ADP-ribosyltransferase activity and regulate a wide range of cellular processes in the nucleus, mitochondria, and cytoplasm. The role of the only sirtuin that resides in the cytoplasm, SIRT2, in the development of ischemic injury and cardiac hypertrophy is not known. In this paper, we show that the hearts of mice with deletion of Sirt2 (Sirt2-/-) display improved cardiac function after ischemia-reperfusion (I/R) and pressure overload (PO), suggesting that SIRT2 exerts maladaptive effects in the heart in response to stress. Similar results were obtained in mice with cardiomyocyte-specific Sirt2 deletion. Mechanistic studies suggest that SIRT2 modulates cellular levels and activity of nuclear factor (erythroid-derived 2)-like 2 (NRF2), which results in reduced expression of antioxidant proteins. Deletion of Nrf2 in the hearts of Sirt2-/- mice reversed protection after PO. Finally, treatment of mouse hearts with a specific SIRT2 inhibitor reduced cardiac size and attenuates cardiac hypertrophy in response to PO. These data indicate that SIRT2 has detrimental effects in the heart and plays a role in cardiac response to injury and the progression of cardiac hypertrophy, which makes this protein a unique member of the SIRT family. Additionally, our studies provide a novel approach for treatment of cardiac hypertrophy and injury by targeting SIRT2 pharmacologically, providing a novel avenue for the treatment of these disorders.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Sirtuina 2 , Animales , Ratones , Cardiomegalia/prevención & control , Isquemia/metabolismo , Miocitos Cardíacos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 2/metabolismo
6.
Circulation ; 148(20): 1582-1592, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37721051

RESUMEN

BACKGROUND: Proper nuclear organization is critical for cardiomyocyte function, because global structural remodeling of nuclear morphology and chromatin structure underpins the development and progression of cardiovascular disease. Previous reports have implicated a role for DNA damage in cardiac hypertrophy; however, the mechanism for this process is not well delineated. AMPK (AMP-activated protein kinase) family of proteins regulates metabolism and DNA damage response (DDR). Here, we examine whether a member of this family, SNRK (SNF1-related kinase), which plays a role in cardiac metabolism, is also involved in hypertrophic remodeling through changes in DDR and structural properties of the nucleus. METHODS: We subjected cardiac-specific Snrk-/- mice to transaortic banding to assess the effect on cardiac function and DDR. In parallel, we modulated SNRK in vitro and assessed its effects on DDR and nuclear parameters. We also used phosphoproteomics to identify novel proteins that are phosphorylated by SNRK. Last, coimmunoprecipitation was used to verify Destrin (DSTN) as the binding partner of SNRK that modulates its effects on the nucleus and DDR. RESULTS: Cardiac-specific Snrk-/- mice display worse cardiac function and cardiac hypertrophy in response to transaortic banding, and an increase in DDR marker pH2AX (phospho-histone 2AX) in their hearts. In addition, in vitro Snrk knockdown results in increased DNA damage and chromatin compaction, along with alterations in nuclear flatness and 3-dimensional volume. Phosphoproteomic studies identified a novel SNRK target, DSTN, a member of F-actin depolymerizing factor proteins that directly bind to and depolymerize F-actin. SNRK binds to DSTN, and DSTN downregulation reverses excess DNA damage and changes in nuclear parameters, in addition to cellular hypertrophy, with SNRK knockdown. We also demonstrate that SNRK knockdown promotes excessive actin depolymerization, measured by the increased ratio of G-actin to F-actin. Last, jasplakinolide, a pharmacological stabilizer of F-actin, rescues the increased DNA damage and aberrant nuclear morphology in SNRK-downregulated cells. CONCLUSIONS: These results indicate that SNRK is a key player in cardiac hypertrophy and DNA damage through its interaction with DSTN. This interaction fine-tunes actin polymerization to reduce DDR and maintain proper cardiomyocyte nuclear shape and morphology.


Asunto(s)
Actinas , Cardiomegalia , Ratones , Animales , Actinas/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Daño del ADN , Cromatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Nat Cell Biol ; 25(10): 1478-1494, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37749225

RESUMEN

All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.


Asunto(s)
Histonas , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Leucina/metabolismo , Histonas/genética , Histonas/metabolismo , Hierro/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Desmetilación
8.
bioRxiv ; 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37503243

RESUMEN

BACKGROUND: Proper nuclear organization is critical for cardiomyocyte (CM) function, as global structural remodeling of nuclear morphology and chromatin structure underpins the development and progression of cardiovascular disease. Previous reports have implicated a role for DNA damage in cardiac hypertrophy, however, the mechanism for this process is not well delineated. AMPK family of proteins regulate metabolism and DNA damage response (DDR). Here, we examine whether a member of this family, SNF1-related kinase (SNRK), which plays a role in cardiac metabolism, is also involved in hypertrophic remodeling through changes in DDR and structural properties of the nucleus. METHODS: We subjected cardiac specific (cs)- Snrk -/- mice to trans-aortic banding (TAC) to assess the effect on cardiac function and DDR. In parallel, we modulated SNRK in vitro and assessed its effects on DDR and nuclear parameters. We also used phospho-proteomics to identify novel proteins that are phosphorylated by SNRK. Finally, co-immunoprecipitation (co-IP) was used to verify Destrin (DSTN) as the binding partner of SNRK that modulates its effects on the nucleus and DDR. RESULTS: cs- Snrk -/- mice display worse cardiac function and cardiac hypertrophy in response to TAC, and an increase in DDR marker pH2AX in their hearts. Additionally, in vitro Snrk knockdown results in increased DNA damage and chromatin compaction, along with alterations in nuclear flatness and 3D volume. Phospho-proteomic studies identified a novel SNRK target, DSTN, a member of F-actin depolymerizing factor (ADF) proteins that directly binds to and depolymerize F-actin. SNRK binds to DSTN, and DSTN downregulation reverses excess DNA damage and changes in nuclear parameters, in addition to cellular hypertrophy, with SNRK knockdown. We also demonstrate that SNRK knockdown promotes excessive actin depolymerization, measured by the increased ratio of globular (G-) actin to F-actin. Finally, Jasplakinolide, a pharmacological stabilizer of F-actin, rescues the increased DNA damage and aberrant nuclear morphology in SNRK downregulated cells. CONCLUSIONS: These results indicate that SNRK is a key player in cardiac hypertrophy and DNA damage through its interaction with DSTN. This interaction fine-tunes actin polymerization to reduce DDR and maintain proper CM nuclear shape and morphology. Clinical Perspective: What is new? Animal hearts subjected to pressure overload display increased SNF1-related kinase (SNRK) protein expression levels and cardiomyocyte specific SNRK deletion leads to aggravated myocardial hypertrophy and heart failure.We have found that downregulation of SNRK impairs DSTN-mediated actin polymerization, leading to maladaptive changes in nuclear morphology, higher DNA damage response (DDR) and increased hypertrophy. What are the clinical implications? Our results suggest that disruption of DDR through genetic loss of SNRK results in an exaggerated pressure overload-induced cardiomyocyte hypertrophy.Targeting DDR, actin polymerization or SNRK/DSTN interaction represent promising therapeutic targets in pressure overload cardiac hypertrophy.

10.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747794

RESUMEN

Sirtuins (SIRT) exhibit deacetylation or ADP-ribosyltransferase activity and regulate a wide range of cellular processes in the nucleus, mitochondria and cytoplasm. The role of the only sirtuin that resides in the cytoplasm, SIRT2, in the development of heart failure (HF) and cardiac hypertrophy is not known. In this paper, we show that the hearts of mice with deletion of Sirt2 ( Sirt2 -/- ) display improved cardiac function after ischemia-reperfusion (I/R) and pressure overload (PO), suggesting that SIRT2 exerts maladaptive effects in the heart in response to stress. Similar results were obtained in mice with cardiomyocyte-specific Sirt2 deletion. Mechanistic studies suggest that SIRT2 modulates cellular levels and activity of nuclear factor (erythroid-derived 2)-like 2 (NRF2), which results in reduced expression of antioxidant proteins. Deletion of Nrf2 in the hearts of Sirt2 -/- mice reversed protection after PO. Finally, treatment of mouse hearts with a specific SIRT2 inhibitors reduces cardiac size and attenuates cardiac hypertrophy in response to PO. These data indicate that SIRT2 has detrimental effects in the heart and plays a role in the progression of HF and cardiac hypertrophy, which makes this protein a unique member of the SIRT family. Additionally, our studies provide a novel approach for treatment of cardiac hypertrophy by targeting SIRT2 pharmacologically, providing a novel avenue for the treatment of this disorder.

11.
Physiol Rep ; 11(4): e15608, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802195

RESUMEN

Systemic branched-chain amino acid (BCAA) metabolism is dysregulated in cardiometabolic diseases. We previously demonstrated that upregulated AMP deaminase 3 (AMPD3) impairs cardiac energetics in a rat model of obese type 2 diabetes, Otsuka Long-Evans-Tokushima fatty (OLETF). Here, we hypothesized that the cardiac BCAA levels and the activity of branched-chain α-keto acid dehydrogenase (BCKDH), a rate-limiting enzyme in BCAA metabolism, are altered by type 2 diabetes (T2DM), and that upregulated AMPD3 expression is involved in the alteration. Performing proteomic analysis combined with immunoblotting, we discovered that BCKDH localizes not only to mitochondria but also to the endoplasmic reticulum (ER), where it interacts with AMPD3. Knocking down AMPD3 in neonatal rat cardiomyocytes (NRCMs) increased BCKDH activity, suggesting that AMPD3 negatively regulates BCKDH. Compared with control rats (Long-Evans Tokushima Otsuka [LETO] rats), OLETF rats exhibited 49% higher cardiac BCAA levels and 49% lower BCKDH activity. In the cardiac ER of the OLETF rats, BCKDH-E1α subunit expression was downregulated, while AMPD3 expression was upregulated, resulting in an 80% lower AMPD3-E1α interaction compared to LETO rats. Knocking down E1α expression in NRCMs upregulated AMPD3 expression and recapitulated the imbalanced AMPD3-BCKDH expressions observed in OLETF rat hearts. E1α knockdown in NRCMs inhibited glucose oxidation in response to insulin, palmitate oxidation, and lipid droplet biogenesis under oleate loading. Collectively, these data revealed previously unrecognized extramitochondrial localization of BCKDH in the heart and its reciprocal regulation with AMPD3 and imbalanced AMPD3-BCKDH interactions in OLETF. Downregulation of BCKDH in cardiomyocytes induced profound metabolic changes that are observed in OLETF hearts, providing insight into mechanisms contributing to the development of diabetic cardiomyopathy.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida) , AMP Desaminasa , Diabetes Mellitus Tipo 2 , Animales , Ratas , AMP Desaminasa/genética , AMP Desaminasa/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Proteómica , Ratas Endogámicas OLETF , Ratas Long-Evans , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética
12.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35316214

RESUMEN

Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.


Asunto(s)
Cardiomiopatías , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Nucleares , Complicaciones Cardiovasculares del Embarazo , Factores de Transcripción , Proteína p53 Supresora de Tumor , Animales , Cardiomiopatías/genética , Cardiomiopatías/patología , Femenino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Periodo Periparto , Peroxidasas/genética , Peroxidasas/metabolismo , Embarazo , Complicaciones Cardiovasculares del Embarazo/metabolismo , Complicaciones Cardiovasculares del Embarazo/terapia , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Tristetraprolina/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
J Mol Cell Cardiol ; 119: 138-146, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29733818

RESUMEN

AMP deaminase (AMPD) plays a crucial role in adenine nucleotide metabolism. Recently we found that upregulated AMPD activity is associated with ATP depletion and contractile dysfunction under the condition of pressure overloading in the heart of a rat model of type 2 diabetes mellitus (T2DM), OLETF. Here we examined the mechanism of AMPD upregulation by T2DM. The protein level of 90-kDa full-length AMPD3 was increased in whole myocardial lysates by 55% in OLETF compared to those in LETO, a non-diabetic control. In contrast, the mRNA levels of AMPD3 in the myocardium were similar in OLETF and LETO. AMPD3 was comparably ubiquitinated in OLETF and LETO, and its degradation ex vivo was more sensitive to MG-132, a proteasome inhibitor, in OLETF than in LETO. MicroRNA array analysis revealed downregulation (>50%) of 57 microRNAs in OLETF compared to those in LETO, among which miR-301b was predicted to interact with the 3'UTR of AMPD3 mRNA. AMPD3 protein level was significantly increased by a miR-301b inhibitor and was decreased by a miR-301b mimetic in H9c2 cells. A luciferase reporter assay confirmed binding of miR-301b to the 3'UTR of AMPD3 mRNA. Transfection of neonatal rat cardiomyocytes with a miR-301b inhibitor increased 90-kDa AMPD3 and reduced ATP level. The results indicate that translational regulation by miR-301b mediates upregulated expression of cardiac AMPD3 protein in OLETF, which potentially reduces the adenine nucleotide pool at the time of increased work load. The miR-301b-AMPD3 axis may be a novel therapeutic target for intervening enegy metabolism in diabetic hearts.


Asunto(s)
AMP Desaminasa/genética , Diabetes Mellitus Tipo 2/genética , MicroARNs/genética , Miocardio/metabolismo , Adenina/biosíntesis , Adenosina Trifosfato/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Contracción Miocárdica/genética , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas
14.
PLoS One ; 12(12): e0188689, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261679

RESUMEN

BACKGROUND: Sleep-disordered breathing (SDB) is highly prevalent in patients with diabetes mellitus (DM) and heart failure (HF) and contributes to poor cardiovascular outcomes. Enlarged glycemic variability (GV) is a risk factor of cardiac events independently of average blood glucose level, but the influence of SDB on GV is uncertain. In this study, we examined whether the impact of SDB on GV is modified by the presence of DM with or without HF. METHODS AND RESULTS: Two hundred three patients (67.5±14.1 [SD] years old, 132 males) who were admitted to our institute for examination or treatment of DM and/or HF underwent continuous glucose monitoring and polysomnography. Both HbA1c (8.0±2.0 vs. 5.7±0.4%) and mean amplitude of glycemic excursion (MAGE, median: 95.5 vs. 63.5 mg/dl) were significantly higher in a DM group (n = 100) than in a non-DM group (n = 103), but apnea-hypopnea index (AHI: 29.0±22.7 vs. 29.3±21.5) was similar in the two groups. AHI was correlated with log MAGE in the non-DM group but not in the DM group, and multivariate regression analysis revealed that AHI was an independent variable for log MAGE in the non-DM group but not in the DM group. We then divided the non-DM patients into two subgroups according to BNP level (100 pg/ml). AHI was positively correlated with log MAGE (r = 0.74, p<0.001) in the non-DM low-BNP subgroup, but such a correlation was not found in the non-DM high-BNP subgroup. Continuous positive airway pressure (CPAP) reduced MAGE from 75.3 to 53.0 mg/dl in the non-DM group but did not reduce MAGE in the DM group. CONCLUSION: Severity of SDB was associated with higher GV, but DM as well as HF diminished the contribution of SDB to GV. Treatment with CPAP was effective for reduction of GV only in patients without DM.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Síndromes de la Apnea del Sueño/complicaciones , Anciano , Automonitorización de la Glucosa Sanguínea , Presión de las Vías Aéreas Positiva Contínua , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Humanos , Masculino , Análisis Multivariante , Péptido Natriurético Encefálico/metabolismo , Análisis de Regresión , Respiración , Sueño , Síndromes de la Apnea del Sueño/fisiopatología , Síndromes de la Apnea del Sueño/terapia
15.
Sci Rep ; 7(1): 5311, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28706237

RESUMEN

Diabetes mellitus is a major risk factor for acute kidney injury (AKI). Here, we hypothesized that suppression of autophagic response underlies aggravation of renal ischemia/reperfusion (I/R) injury by type 2 diabetes mellitus (T2DM). In OLETF, a rat model of T2DM, and its non-diabetic control, LETO, AKI was induced by unilateral nephrectomy and 30-min occlusion and 24-h reperfusion of the renal artery in the contralateral kidney. Levels of serum creatinine and blood urea nitrogen and tubular injury score after I/R were significantly higher in OLETF than in LETO. Administration of chloroquine, a widely used autophagy inhibitor, aggravated I/R-induced renal injury in LETO, but not in OLETF. In contrast to LETO, OLETF exhibited no increase in autophagosomes in the proximal tubules after I/R. Immunoblotting showed that I/R activated the AMPK/ULK1 pathway in LETO but not in OLETF, and mTORC1 activation after I/R was enhanced in OLETF. Treatment of OLETF with rapamycin, an mTORC1 inhibitor, partially restored autophagic activation in response to I/R and significantly attenuated I/R-induced renal injury. Collectively, these findings indicate that suppressed autophagic activation in proximal tubules by impaired AMPK/ULK1 signaling and upregulated mTORC1 activation underlies T2DM-induced worsening of renal I/R injury.


Asunto(s)
Autofagia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Enfermedades Renales/fisiopatología , Daño por Reperfusión/fisiopatología , Animales , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Modelos Animales de Enfermedad , Enfermedades Renales/patología , Túbulos Renales Proximales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/análisis , Ratas , Daño por Reperfusión/patología
16.
J Mol Cell Cardiol ; 108: 203-213, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28647341

RESUMEN

BACKGROUND: The role of necroptosis in myocardial injury has not been fully characterized. Here we examined roles of mitochondrial permeability transition pore (mPTP) and autophagy in necroptosis of cardiomyocytes. METHODS AND RESULTS: In H9c2 cells, necroptosis was induced by treatment with TNF-α (TNF) and z-VAD-fmk (zVAD) for 24h, and necroptotic death was determined by LDH release (as % of total). TNF/zVAD increased LDH release from 16.6±4.3% to 60.6±2.7%, and the LDH release was suppressed by necrostatin-1 (29.4±4.0%), a RIP1 inhibitor, and by siRNA-mediated knockdown of RIP3 (27.7±2.0%), confirming RIP1-RIP3-dependent necroptosis. TNF/zVAD-induced necroptosis was not attenuated by mPTP inhibitors or GSK-3ß inhibitors. TNF/zVAD increased LC3-II level, but the change was not further enhanced by bafilomycin A1. The increase of LC3-II by TNF/zVAD was associated with suppression of both autophagic flux and LC3-LAMP1 co-localization. TNF/zVAD did not modify phosphorylation of Akt, p70s6K, AMPK, ULK1 or VASP but significantly increased RIP1-p62 binding and conversely reduced p62-LC3 binding. Rapamycin inhibited RIP1-p62 and RIP1-RIP3 interactions induced by TNF/zVAD and partly restored autophagic flux and suppressed LDH release in TNF/zVAD-treated cells. The effect of rapamycin on LDH release was reduced by knockdown of Atg5 expression. Knockdown of p62 by siRNA augmented LDH release by TNF/zVAD. CONCLUSION: Suppression of autophagic flux contributes to RIP1-RIP3 interaction and necroptosis of cardiomyocytes, and sequestration of p62 from its interaction with LC3-II by p62-RIP1 interaction possibly underlies the suppressed autophagy. The mPTP is unlikely to play a major role in execution of necroptosis in cardiomyocytes.


Asunto(s)
Apoptosis , Autofagia , Miocitos Cardíacos/metabolismo , Necrosis , Transducción de Señal , Clorometilcetonas de Aminoácidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Biomarcadores , Línea Celular , Lisosomas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/efectos de los fármacos , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
17.
J Med Ultrason (2001) ; 43(1): 95-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26703173

RESUMEN

A 65-year-old male developed acute myocardial infarction due to coronary artery dissection and tricuspid valve injury after blunt chest trauma. Acute myocardial infarction was treated by coronary artery intervention; however, refractory heart failure with pleural effusion remained. The first transthoracic echocardiography (TTE) on admission failed to clearly visualize the tricuspid valve and right ventricle due to poor image quality. A follow-up TTE with contrast ultrasonography revealed pericardial rupture in addition to tricuspid regurgitation. Ruptures of the tricuspid papillary muscle and pericardium were confirmed during surgery and were repaired successfully. Blunt chest trauma results in various cardiac injuries including cardiac rupture, intramural hematoma, valvular injury, coronary artery injury, and electrical disturbances, leading to critical conditions and high mortality. Of such blunt trauma-induced injuries, coronary artery dissection, tricuspid valve injury, and pericardial rupture caused by blunt chest trauma are rare, and simultaneous occurrence of the three types of injuries that were successfully repaired has not been reported. In addition, this case indicates the utility of contrast ultrasonography for diagnosis of pericardial rupture caused by blunt chest trauma.


Asunto(s)
Ecocardiografía , Pericardio/diagnóstico por imagen , Pericardio/lesiones , Traumatismos Torácicos/diagnóstico por imagen , Traumatismos Torácicos/diagnóstico , Anciano , Medios de Contraste , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/cirugía , Diagnóstico Diferencial , Ecocardiografía/métodos , Estudios de Seguimiento , Humanos , Masculino , Pericardio/cirugía , Radiografía , Rotura/diagnóstico , Rotura/diagnóstico por imagen , Rotura/cirugía , Traumatismos Torácicos/cirugía , Insuficiencia de la Válvula Tricúspide/diagnóstico por imagen , Insuficiencia de la Válvula Tricúspide/etiología , Insuficiencia de la Válvula Tricúspide/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA