Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979244

RESUMEN

Recent research has indicated the presence of heterochromatin-like regions of extended protein occupancy and transcriptional silencing of bacterial genomes. We utilized an integrative approach to track chromatin structure and transcription in E. coli K-12 across a wide range of nutrient conditions. In the process, we identified multiple loci which act similarly to facultative heterochromatin in eukaryotes, normally silenced but permitting expression of genes under specific conditions. We also found a strong enrichment of small regulatory RNAs (sRNAs) among the set of differentially expressed transcripts during nutrient stress. Using a newly developed bioinformatic pipeline, the transcription factors regulating sRNA expression were bioinformatically predicted, with experimental follow-up revealing novel relationships for 36 sRNA-transcription factors candidates. Direct regulation of sRNA expression was confirmed by mutational analysis for five sRNAs of metabolic interest: IsrB, CsrB and CsrC, GcvB, and GadY. Our integrative analysis thus reveals additional layers of complexity in the nutrient stress response in E. coli and provides a framework for revealing similar poorly understood regulatory logic in other organisms.

2.
Cell Genom ; 3(3): 100262, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950380

RESUMEN

Precision oncology promises accurate prediction of disease trajectories by utilizing molecular features of tumors. We present a systematic analysis of the prognostic potential of diverse molecular features across large cancer cohorts. We find that the mRNA expression of biologically coherent sets of genes (modules) is substantially more predictive of patient survival than single-locus genomic and transcriptomic aberrations. Extending our analysis beyond existing curated gene modules, we find a large novel class of highly prognostic DNA/RNA cis-regulatory modules associated with dynamic gene expression within cancers. Remarkably, in more than 82% of cancers, modules substantially improve survival stratification compared with conventional clinical factors and prominent genomic aberrations. The prognostic potential of cancer modules generalizes to external cohorts better than conventionally used single-gene features. Finally, a machine-learning framework demonstrates the combined predictive power of multiple modules, yielding prognostic models that perform substantially better than existing histopathological and clinical factors in common use.

3.
Sci Adv ; 9(1): eade9120, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608131

RESUMEN

Utilization of specific codons varies between organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine limitation-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced an adaptive proteomic shift toward low-arginine codon-containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.


Asunto(s)
Arginina , Neoplasias Colorrectales , Humanos , Secuencia de Bases , Arginina/genética , Arginina/metabolismo , Biosíntesis de Proteínas , Proteómica , Escherichia coli/metabolismo , Codón/metabolismo , Neoplasias Colorrectales/genética , Microambiente Tumoral
4.
bioRxiv ; 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36711568

RESUMEN

Utilization of specific codons varies significantly across organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine restriction-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced a proteomic shift towards low arginine codon containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.

5.
Commun Biol ; 6(1): 22, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635485

RESUMEN

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.


Asunto(s)
Enfermedades Mitocondriales , Fosforilación Oxidativa , Humanos , Longevidad , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
6.
PLoS Genet ; 18(10): e1010456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36279294

RESUMEN

Thymidine starvation causes rapid cell death. This enigmatic process known as thymineless death (TLD) is the underlying killing mechanism of diverse antimicrobial and antineoplastic drugs. Despite decades of investigation, we still lack a mechanistic understanding of the causal sequence of events that culminate in TLD. Here, we used a diverse set of unbiased approaches to systematically determine the genetic and regulatory underpinnings of TLD in Escherichia coli. In addition to discovering novel genes in previously implicated pathways, our studies revealed a critical and previously unknown role for intracellular acidification in TLD. We observed that a decrease in cytoplasmic pH is a robust early event in TLD across different genetic backgrounds. Furthermore, we show that acidification is a causal event in the death process, as chemical and genetic perturbations that increase intracellular pH substantially reduce killing. We also observe a decrease in intracellular pH in response to exposure to the antibiotic gentamicin, suggesting that intracellular acidification may be a common mechanistic step in the bactericidal effects of other antibiotics.


Asunto(s)
Escherichia coli , Timina , Escherichia coli/metabolismo , ADN Bacteriano/genética , Viabilidad Microbiana , Timina/metabolismo , Recombinación Genética , Concentración de Iones de Hidrógeno
7.
Dev Cell ; 57(9): 1146-1159.e7, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35487218

RESUMEN

Metastatic colonization is the primary cause of death from colorectal cancer (CRC). We employed genome-scale in vivo short hairpin RNA (shRNA) screening and validation to identify 26 promoters of CRC liver colonization. Among these genes, we identified a cluster that contains multiple targetable genes, including ITPR3, which promoted liver-metastatic colonization and elicited similar downstream gene expression programs. ITPR3 is a caffeine-sensitive inositol 1,4,5-triphosphate (IP3) receptor that releases calcium from the endoplasmic reticulum and enhanced metastatic colonization by inducing expression of RELB, a transcription factor that is associated with non-canonical NF-κB signaling. Genetic, cell biological, pharmacologic, and clinical association studies revealed that ITPR3 and RELB drive CRC colony formation by promoting cell survival upon substratum detachment or hypoxic exposure. RELB was sufficient to drive colonization downstream of ITPR3. Our findings implicate the ITPR3/calcium/RELB axis in CRC metastatic colony formation and uncover multiple clinico-pathologically associated targetable proteins as drivers of CRC metastatic colonization.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Calcio/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias Hepáticas/genética , FN-kappa B/metabolismo , Factor de Transcripción ReIB/genética , Factor de Transcripción ReIB/metabolismo
8.
PLoS Biol ; 20(4): e3001557, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35476699

RESUMEN

[This corrects the article DOI: 10.1371/journal.pbio.3001306.].

9.
Cell ; 184(16): 4329-4347.e23, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237253

RESUMEN

We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Larva/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Motivos de Nucleótidos/genética , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética
10.
PLoS Biol ; 19(6): e3001306, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34170902

RESUMEN

Free-living bacteria adapt to environmental change by reprogramming gene expression through precise interactions of hundreds of DNA-binding proteins. A predictive understanding of bacterial physiology requires us to globally monitor all such protein-DNA interactions across a range of environmental and genetic perturbations. Here, we show that such global observations are possible using an optimized version of in vivo protein occupancy display technology (in vivo protein occupancy display-high resolution, IPOD-HR) and present a pilot application to Escherichia coli. We observe that the E. coli protein-DNA interactome organizes into 2 distinct prototypic features: (1) highly dynamic condition-dependent transcription factor (TF) occupancy; and (2) robust kilobase scale occupancy by nucleoid factors, forming silencing domains analogous to eukaryotic heterochromatin. We show that occupancy dynamics across a range of conditions can rapidly reveal the global transcriptional regulatory organization of a bacterium. Beyond discovery of previously hidden regulatory logic, we show that these observations can be utilized to computationally determine sequence specificity models for the majority of active TFs. Our study demonstrates that global observations of protein occupancy combined with statistical inference can rapidly and systematically reveal the transcriptional regulatory and structural features of a bacterial genome. This capacity is particularly crucial for non-model bacteria that are not amenable to routine genetic manipulation.


Asunto(s)
Cromosomas Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Ambiente , Escherichia coli/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Factor sigma/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
11.
PLoS One ; 15(11): e0239528, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33170850

RESUMEN

The yeast Saccharomyces cerevisiae has been the subject of many studies aimed at understanding mechanisms of adaptation to environmental stresses. Most of these studies have focused on adaptation to sub-lethal stresses, upon which a stereotypic transcriptional program called the environmental stress response (ESR) is activated. However, the genetic and regulatory factors that underlie the adaptation and survival of yeast cells to stresses that cross the lethality threshold have not been systematically studied. Here, we utilized a combination of gene expression profiling, deletion-library fitness profiling, and experimental evolution to systematically explore adaptation of S. cerevisiae to acute exposure to threshold lethal ethanol concentrations-a stress with important biotechnological implications. We found that yeast cells activate a rapid transcriptional reprogramming process that is likely adaptive in terms of post-stress survival. We also utilized repeated cycles of lethal ethanol exposure to evolve yeast strains with substantially higher ethanol tolerance and survival. Importantly, these strains displayed bulk growth-rates that were indistinguishable from the parental wild-type strain. Remarkably, these hyper-ethanol tolerant strains had reprogrammed their pre-stress gene expression states to match the likely adaptive post-stress response in the wild-type strain. Our studies reveal critical determinants of yeast survival to lethal ethanol stress and highlight potentially general principles that may underlie evolutionary adaptation to lethal stresses in general.


Asunto(s)
Etanol/efectos adversos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Adaptación Fisiológica , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN
12.
Commun Biol ; 3(1): 723, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247197

RESUMEN

Genome-scale CRISPR interference (CRISPRi) is widely utilized to study cellular processes in a variety of organisms. Despite the dominance of Saccharomyces cerevisiae as a model eukaryote, an inducible genome-wide CRISPRi library in yeast has not yet been presented. Here, we present a genome-wide, inducible CRISPRi library, based on spacer design rules optimized for S. cerevisiae. We have validated this library for genome-wide interrogation of gene function across a variety of applications, including accurate discovery of haploinsufficient genes and identification of enzymatic and regulatory genes involved in adenine and arginine biosynthesis. The comprehensive nature of the library also revealed refined spacer design parameters for transcriptional repression, including location, nucleosome occupancy and nucleotide features. CRISPRi screens using this library can identify genes and pathways with high precision and a low false discovery rate across a variety of experimental conditions, enabling rapid and reliable assessment of genetic function and interactions in S. cerevisiae.


Asunto(s)
Sistemas CRISPR-Cas , Biblioteca de Genes , Saccharomyces cerevisiae/genética , Adenina/biosíntesis , Arginina/biosíntesis , Genes Fúngicos , Plásmidos
13.
Proc Natl Acad Sci U S A ; 117(43): 26710-26718, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33037152

RESUMEN

Large-scale proteomic methods are essential for the functional characterization of proteins in their native cellular context. However, proteomics has lagged far behind genomic approaches in scalability, standardization, and cost. Here, we introduce in vivo mRNA display, a technology that converts a variety of proteomics applications into a DNA sequencing problem. In vivo-expressed proteins are coupled with their encoding messenger RNAs (mRNAs) via a high-affinity stem-loop RNA binding domain interaction, enabling high-throughput identification of proteins with high sensitivity and specificity by next generation DNA sequencing. We have generated a high-coverage in vivo mRNA display library of the Saccharomyces cerevisiae proteome and demonstrated its potential for characterizing subcellular localization and interactions of proteins expressed in their native cellular context. In vivo mRNA display libraries promise to circumvent the limitations of mass spectrometry-based proteomics and leverage the exponentially improving cost and throughput of DNA sequencing to systematically characterize native functional proteomes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , ARN Mensajero , ADN de Hongos/análisis , ADN de Hongos/genética , Biblioteca de Genes , Proteoma/análisis , Proteoma/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
14.
Nat Microbiol ; 5(10): 1192-1201, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32451472

RESUMEN

Despite longstanding appreciation of gene expression heterogeneity in isogenic bacterial populations, affordable and scalable technologies for studying single bacterial cells have been limited. Although single-cell RNA sequencing (scRNA-seq) has revolutionized studies of transcriptional heterogeneity in diverse eukaryotic systems1-13, the application of scRNA-seq to prokaryotes has been hindered by their extremely low mRNA abundance14-16, lack of mRNA polyadenylation and thick cell walls17. Here, we present prokaryotic expression profiling by tagging RNA in situ and sequencing (PETRI-seq)-a low-cost, high-throughput prokaryotic scRNA-seq pipeline that overcomes these technical obstacles. PETRI-seq uses in situ combinatorial indexing11,12,18 to barcode transcripts from tens of thousands of cells in a single experiment. PETRI-seq captures single-cell transcriptomes of Gram-negative and Gram-positive bacteria with high purity and low bias, with median capture rates of more than 200 mRNAs per cell for exponentially growing Escherichia coli. These characteristics enable robust discrimination of cell states corresponding to different phases of growth. When applied to wild-type Staphylococcus aureus, PETRI-seq revealed a rare subpopulation of cells undergoing prophage induction. We anticipate that PETRI-seq will have broad utility in defining single-cell states and their dynamics in complex microbial communities.


Asunto(s)
Células Procariotas , ARN/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Biología Computacional/métodos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Células Procariotas/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma
15.
Cell ; 180(5): 1002-1017.e31, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109417

RESUMEN

Genome-wide CRISPR screens enable systematic interrogation of gene function. However, guide RNA libraries are costly to synthesize, and their limited diversity compromises the sensitivity of CRISPR screens. Using the Streptococcus pyogenes CRISPR-Cas adaptation machinery, we developed CRISPR adaptation-mediated library manufacturing (CALM), which turns bacterial cells into "factories" for generating hundreds of thousands of crRNAs covering 95% of all targetable genomic sites. With an average gene targeted by more than 100 distinct crRNAs, these highly comprehensive CRISPRi libraries produced varying degrees of transcriptional repression critical for uncovering novel antibiotic resistance determinants. Furthermore, by iterating CRISPR adaptation, we rapidly generated dual-crRNA libraries representing more than 100,000 dual-gene perturbations. The polarized nature of spacer adaptation revealed the historical contingency in the stepwise acquisition of genetic perturbations leading to increasing antibiotic resistance. CALM circumvents the expense, labor, and time required for synthesis and cloning of gRNAs, allowing generation of CRISPRi libraries in wild-type bacteria refractory to routine genetic manipulation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Genoma Bacteriano/genética , Biblioteca Genómica , Staphylococcus aureus/genética , Escherichia coli/genética , Humanos , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/genética , Streptococcus pyogenes/genética
16.
mSystems ; 5(1)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964772

RESUMEN

Antibiotic persistence, the noninherited tolerance of a subpopulation of bacteria to high levels of antibiotics, is a bet-hedging phenomenon with broad clinical implications. Indeed, the isolation of bacteria with substantially increased persistence rates from chronic infections suggests that evolution of hyperpersistence is a significant factor in clinical therapy resistance. However, the pathways that lead to hyperpersistence and the underlying cellular states have yet to be systematically studied. Here, we show that laboratory evolution can lead to increase in persistence rates by orders of magnitude for multiple independently evolved populations of Escherichia coli and that the driving mutations are highly enriched in translation-related genes. Furthermore, two distinct adaptive mutations converge on concordant transcriptional changes, including increased population heterogeneity in the expression of several genes. Cells with extreme expression of these genes showed dramatic differences in persistence rates, enabling isolation of subpopulations in which a substantial fraction of cells are persisters. Expression analysis reveals coherent regulation of specific pathways that may be critical to establishing the hyperpersistence state. Hyperpersister mutants can thus enable the systematic molecular characterization of this unique physiological state, a critical prerequisite for developing antipersistence strategies.IMPORTANCE Bacterial persistence is a fascinating phenomenon in which a small subpopulation of bacteria becomes phenotypically tolerant to lethal antibiotic exposure. There is growing evidence that populations of bacteria in chronic clinical infections develop a hyperpersistent phenotype, enabling a substantially larger subpopulation to survive repeated antibiotic treatment. The mechanisms of persistence and modes of increasing persistence rates remain largely unknown. Here, we utilized experimental evolution to select for Escherichia coli mutants that have more than a thousandfold increase in persistence rates. We discovered that a variety of individual mutations to translation-related processes are causally involved. Furthermore, we found that these mutations lead to population heterogeneity in the expression of specific genes. We show that this can be used to isolate populations in which the majority of bacteria are persisters, thereby enabling systems-level characterization of this fascinating and clinically significant microbial phenomenon.

17.
Genome Res ; 29(7): 1100-1114, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31227602

RESUMEN

Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different cis-elements and trans-factors are integrated to determine mRNA stability remains poorly understood. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. By using a massively parallel reporter assay, we identified cis-regulatory sequences in the 3' UTR, including U-rich motifs that are associated with increased mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC, and CUGC elements emerged as destabilizing motifs, with miR-430 and AREs causing mRNA deadenylation upon genome activation. We identified trans-factors by profiling RNA-protein interactions and found that poly(U)-binding proteins are preferentially associated with 3' UTR sequences and stabilizing motifs. We show that this activity is antagonized by C-rich motifs and correlated with protein binding. Finally, we integrated these regulatory motifs into a machine learning model that predicts reporter mRNA stability in vivo.


Asunto(s)
Regiones no Traducidas 3' , Regulación del Desarrollo de la Expresión Génica , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Aprendizaje Automático , Modelos Genéticos , Secuencias Reguladoras de Ácido Ribonucleico , Pez Cebra/embriología , Pez Cebra/genética , Cigoto
18.
PLoS Biol ; 16(4): e2004979, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29672507

RESUMEN

Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor-encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be reflective of an ancestral function of an "ur-" bHLH gene.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Nociceptores/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Biología Computacional , Sinapsis Eléctricas/metabolismo , Sinapsis Eléctricas/ultraestructura , Embrión no Mamífero , Ontología de Genes , Canales Iónicos/genética , Canales Iónicos/metabolismo , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Anotación de Secuencia Molecular , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Nociceptores/citología , Fenotipo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transcripción Genética
19.
Elife ; 72018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29620524

RESUMEN

Cells adapt to familiar changes in their environment by activating predefined regulatory programs that establish adaptive gene expression states. These hard-wired pathways, however, may be inadequate for adaptation to environments never encountered before. Here, we reveal evidence for an alternative mode of gene regulation that enables adaptation to adverse conditions without relying on external sensory information or genetically predetermined cis-regulation. Instead, individual genes achieve optimal expression levels through a stochastic search for improved fitness. By focusing on improving the overall health of the cell, the proposed stochastic tuning mechanism discovers global gene expression states that are fundamentally new and yet optimized for novel environments. We provide experimental evidence for stochastic tuning in the adaptation of Saccharomyces cerevisiae to laboratory-engineered environments that are foreign to its native gene-regulatory network. Stochastic tuning operates locally at individual gene promoters, and its efficacy is modulated by perturbations to chromatin modification machinery.


Asunto(s)
Adaptación Fisiológica , Regulación Fúngica de la Expresión Génica , Variación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Procesos Estocásticos , Transcripción Genética , Algoritmos , Cromatina , Redes Reguladoras de Genes , Genoma Fúngico , Modelos Genéticos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Secuenciación Completa del Genoma
20.
PLoS Genet ; 11(12): e1005715, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26647077

RESUMEN

Microorganisms exist almost exclusively in interactive multispecies communities, but genetic determinants of the fitness of interacting bacteria, and accessible adaptive pathways, remain uncharacterized. Here, using a two-species system, we studied the antagonism of Pseudomonas aeruginosa against Escherichia coli. Our unbiased genome-scale approach enabled us to identify multiple factors that explained the entire antagonism observed. We discovered both forms of ecological competition-sequestration of iron led to exploitative competition, while phenazine exposure engendered interference competition. We used laboratory evolution to discover adaptive evolutionary trajectories in our system. In the presence of P. aeruginosa toxins, E. coli populations showed parallel molecular evolution and adaptive convergence at the gene-level. The multiple resistance pathways discovered provide novel insights into mechanisms of toxin entry and activity. Our study reveals the molecular complexity of a simple two-species interaction, an important first-step in the application of systems biology to detailed molecular dissection of interactions within native microbiomes.


Asunto(s)
Escherichia coli/genética , Evolución Molecular , Pseudomonas aeruginosa/genética , Biología de Sistemas , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Aptitud Genética/efectos de los fármacos , Genoma Bacteriano , Fenazinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA