Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305428

RESUMEN

MOTIVATION: 5-Methylcytosine (5mC), a fundamental element of DNA methylation in eukaryotes, plays a vital role in gene expression regulation, embryonic development, and other biological processes. Although several computational methods have been proposed for detecting the base modifications in DNA like 5mC sites from Nanopore sequencing data, they face challenges including sensitivity to noise, and ignoring the imbalanced distribution of methylation sites in real-world scenarios. RESULTS: Here, we develop NanoCon, a deep hybrid network coupled with contrastive learning strategy to detect 5mC methylation sites from Nanopore reads. In particular, we adopted a contrastive learning module to alleviate the issues caused by imbalanced data distribution in nanopore sequencing, offering a more accurate and robust detection of 5mC sites. Evaluation results demonstrate that NanoCon outperforms existing methods, highlighting its potential as a valuable tool in genomic sequencing and methylation prediction. In addition, we also verified the effectiveness of our representation learning ability on two datasets by visualizing the dimension reduction of the features of methylation and nonmethylation sites from our NanoCon. Furthermore, cross-species and cross-5mC methylation motifs experiments indicated the robustness and the ability to perform transfer learning of our model. We hope this work can contribute to the community by providing a powerful and reliable solution for 5mC site detection in genomic studies. AVAILABILITY AND IMPLEMENTATION: The project code is available at https://github.com/Challis-yin/NanoCon.


Asunto(s)
Nanoporos , Metilación de ADN , Genómica , Genoma , ADN
2.
Comput Biol Med ; 164: 106904, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453376

RESUMEN

Drug toxicity prediction is essential to drug development, which can help screen compounds with potential toxicity and reduce the cost and risk of animal experiments and clinical trials. However, traditional handcrafted feature-based and molecular-graph-based approaches are insufficient for molecular representation learning. To address the problem, we developed an innovative molecular fingerprint Graph Transformer framework (MolFPG) with a global-aware module for interpretable toxicity prediction. Our approach encodes compounds using multiple molecular fingerprinting techniques and integrates Graph Transformer-based molecular representation for feature learning and toxic prediction. Experimental results show that our proposed approach has high accuracy and reliability in predicting drug toxicity. In addition, we explored the relationship between drug features and toxicity through an interpretive analysis approach, which improved the interpretability of the approach. Our results highlight the potential of Graph Transformers and multi-level fingerprints for accelerating the drug discovery process by reliably, effectively alarming drug safety. We believe that our study will provide vital support and reference for further development in the field of drug development and toxicity assessment.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Animales , Reproducibilidad de los Resultados , Aprendizaje
3.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36562719

RESUMEN

BACKGROUND: Cell-penetrating peptides (CPPs) have received considerable attention as a means of transporting pharmacologically active molecules into living cells without damaging the cell membrane, and thus hold great promise as future therapeutics. Recently, several machine learning-based algorithms have been proposed for predicting CPPs. However, most existing predictive methods do not consider the agreement (disagreement) between similar (dissimilar) CPPs and depend heavily on expert knowledge-based handcrafted features. RESULTS: In this study, we present SiameseCPP, a novel deep learning framework for automated CPPs prediction. SiameseCPP learns discriminative representations of CPPs based on a well-pretrained model and a Siamese neural network consisting of a transformer and gated recurrent units. Contrastive learning is used for the first time to build a CPP predictive model. Comprehensive experiments demonstrate that our proposed SiameseCPP is superior to existing baseline models for predicting CPPs. Moreover, SiameseCPP also achieves good performance on other functional peptide datasets, exhibiting satisfactory generalization ability.


Asunto(s)
Péptidos de Penetración Celular , Péptidos de Penetración Celular/metabolismo , Algoritmos , Transporte Biológico , Redes Neurales de la Computación , Aprendizaje Automático
4.
Front Pharmacol ; 12: 759479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002701

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has aggressed in more than 200 countries and territories since Dec 2019, and 30 million cases of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 have been reported, including 950,000 deaths. Supportive treatment remains the mainstay of therapy for COVID-19. There are no small-molecule-specific antiviral drugs available to prevent and treat COVID-19 until recently. Herbal medicine can facilitate syndrome differentiation and treatment according to the clinical manifestations of patients and has demonstrated effectiveness in epidemic prevention and control. The National Health Commission (NHC) of China has recommended "three TCM prescriptions and three medicines," as a group of six effective herbal formulas against COVID-19 in the released official file "Diagnosis and Treatment Protocol for COVID-19 Patients: Herbal Medicine for the Priority Treatment of COVID-19." This study aimed to develop a collaborative filtering approach to signaling drug combinations that are similar to the six herbal formulas as potential therapeutic treatments for treating COVID-19. The results have been evaluated by herbal medicine experts' domain knowledge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA