Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(14): 16780-16790, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35380044

RESUMEN

In this study, we investigated band alignments at CdS/epitaxial CuInxGa1-xSe2 (epi-CIGSe) and epi-CIGSe/GaAs heterointerfaces for solar cell applications using ultraviolet, inverse, and X-ray photoemission spectroscopy (UPS, IPES, and XPS) techniques. We clarified the impacts of KF postdeposition treatment (KF-PDT) at the CdS/epi-CIGSe front heterointerfaces. We found that KF-PDT changed the conduction band alignment at the CdS/epi-CIGSe heterointerface from a cliff to flat configuration, attributed to an increase in the electron affinity (EA) and ionization potential (IP) of the epi-CIGSe surface because of a decrease in Cu and Ga contents. Herein, we discuss the correlation between the impacts of KF-PDT and the solar cell performance. Furthermore, we also investigated the band alignment at the epi-CIGSe/GaAs rear heterointerface. Electron barriers were formed at the epi-CIGSe/GaAs interface, suppressing carrier recombination as the back surface field. Contrarily, a hole accumulation layer is formed by the valence band bending, which is like Ohmic contact.

2.
Phys Chem Chem Phys ; 24(3): 1262-1285, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34935800

RESUMEN

Chalcopyrite CuInSe2 (CISe)-based thin-film photovoltaic solar cells have been attracting attention since the 1970s. The technologies of CISe-based thin-film growth and device fabrication processes have already been put into practical applications and today commercial products are available. Nevertheless, there are numerous poorly understood areas in the physical and chemical aspects of the underlying materials science and interfacial and bulk defect physics in CISe-based thin-films and devices for further developments. In this paper, current issues in physical and chemical studies of CISe-based materials and devices are reviewed. Correlations between Cu-deficient phases and the effects of alkali-metals, applications to lightweight and flexible solar minimodules, single-crystalline epitaxial Cu(In,Ga)Se2 films and devices, differences between Cu(In,Ga)Se2 and Ag(In,Ga)Se2 materials, wide-gap CuGaSe2 films and devices, all-dry processed CISe-based solar cells with high photovoltaic efficiencies, and also fundamental studies on open circuit voltage loss analysis and the energy band structure at the interface are among the main areas of discussion in this review.

3.
ACS Appl Mater Interfaces ; 11(4): 4637-4648, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30623638

RESUMEN

The surface electronic properties of the light absorber and band alignment at the p/n heterointerface are key issues for high-performance heterojunction solar cells. We investigated the band alignment of the heterointerface between cadmium sulfide (CdS) and Ge-incorporated Cu2ZnSnSe4 (CZTGSe), with Ge/(Ge + Sn) ratios ( x) between 0 and 0.4, by X-ray photoelectron, ultraviolet, and inversed photoemission spectroscopies (XPS, UPS, and IPES, respectively). In particular, we used interface-induced band bending in order to determine the conduction band offset (CBO) and valence-band offset (VBO), which were calculated from the core-level shifts of each element in both the CdS overlayer and the CZTGSe bottom layer. Moreover, the surface electronic properties of CZTGSe were also investigated by laser-irradiated XPS. The CBO at the CdS/CZTGSe heterointerface decreased linearly, from +0.36 to +0.20 eV, as x was increased from 0 to 0.4; in contrast, the VBO at the CdS/CZTGSe heterointerface was independent of Ge content. Both UPS and IPES revealed that the Fermi level at the CZTGSe surface is located near the center of the band gap. The hole concentration at the CZTGSe surface was on the order of 1011 cm-3, which is much smaller than that of the bulk (∼1016 cm-3). We discuss the differences in hole deficiencies near the surface and in the bulk on the basis of laser-irradiated XPS and conclude that hole deficiencies are due to defects distributed near the surface with densities that are lower than in the bulk, and the Fermi level is not pinned at the CZTGSe surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA