Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Radiat Res ; 63(6): 838-848, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36109319

RESUMEN

The polymer gel dosimeter has been proposed for use as a 3D dosimeter for complex dose distribution measurement of high dose-rate (HDR) brachytherapy. However, various shapes of catheter/applicator for sealed radioactive source transport used in clinical cases must be placed in the gel sample. The absorbed dose readout for the magnetic resonance (MR)-based polymer gel dosimeters requires calibration data for the dose-transverse relaxation rate (R2) response. In this study, we evaluated in detail the dose uncertainty and dose resolution of three calibration methods, the multi-sample and distance methods using the Ir-192 source and the linear accelerator (linac) method using 6MV X-rays. The use of Ir-192 sources increases dose uncertainty with steep dose gradients. We clarified that the uniformly irradiated gel sample improved the signal-to-noise ratio (SNR) due to the large slice thickness of MR images and could acquire an accurate calibration curve using the linac method. The curved tandem and ovoid applicator used for intracavitary irradiation of HDR brachytherapy for cervical cancer were reproduced with a glass tube to verify the dose distribution. The results of comparison with the treatment planning system (TPS) calculation by gamma analysis on the 3%/2 mm criterion were in good agreement with a gamma pass rate of 90%. In addition, the prescription dose could be evaluated accurately. We conclude that it is easy to place catheter/applicator in the polymer gel dosimeters, making them a useful tool for verifying the 3D dose distribution of HDR brachytherapy with accurate calibration methods.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/radioterapia , Polímeros , Proteínas del Tejido Nervioso
2.
Phys Med Biol ; 65(17): 175008, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32485693

RESUMEN

Dose distributions have become more complex with the introduction of image-guided brachytherapy in high-dose-rate (HDR) brachytherapy treatments. Therefore, to correctly execute HDR, conducting a quality assurance programme for the remote after-loading system and verifying the dose distribution in the patient treatment plan are necessary. The characteristics of the dose distribution of HDR brachytherapy are that the dose is high near the source and rapidly drops when the distance from the source increases. Therefore, a measurement tool corresponding to the characteristic is required. In this study, using an Iridium-192 (Ir-192) source, we evaluated the basic characteristics of a nanoclay-based radio-fluorogenic gel (NC-RFG) dosimeter that is a fluorescent gel dosimeter using dihydrorhodamine 123 hydrochloride as a fluorescent probe. The two-dimensional dose distribution measurements were performed at multiple source positions to simulate a clinical plan. Fluorescence images of the irradiated NC-RFG were obtained at a high resolution (0.04 mm pixel-1) using a gel scanner with excitation at 465 nm. Good linearity was confirmed up to a dose range of 100 Gy without dose rate dependence. The dose distribution measurement at the five-point source position showed good agreement with the treatment planning system calculation. The pass ratio by gamma analysis was 92.1% with a 2%/1 mm criterion. The NC-RFG dosimeter demonstrates to have the potential of being a useful tool for quality assurance of the dose distribution delivered by HDR brachytherapy. Moreover, compared with conventional gel dosimeters such as polymer gel and Fricke gel dosimeters it solves the problems of diffusion, dose rate dependence and inhibition of oxygen-induced reactions. Furthermore, it facilitates dose data to be read in a short time after irradiation, which is useful for clinical use.


Asunto(s)
Braquiterapia , Colorantes Fluorescentes , Dosis de Radiación , Radiometría/instrumentación , Geles , Humanos , Radioisótopos de Iridio , Dosificación Radioterapéutica , Rodaminas
3.
Brachytherapy ; 19(3): 362-371, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32209357

RESUMEN

PURPOSE: The purpose of this study was to develop a novel quality assurance (QA) program to check the entire treatment chain of image-guided brachytherapy with dose distribution evaluation in a single setup and irradiation using a gel dosimeter. METHODS AND MATERIALS: A polymer gel was used, and the readout was performed by magnetic resonance scanning. A CT-based treatment plan was generated using the Oncentra planning system (Elekta, Sweden), and irradiation was performed three times using an afterloading device with an Ir-192 source. The dose-response curve of the gel was created using 6-MV X-ray, which is independent of the source beams. Planar gamma images on a coronal plane along the source transport axis were calculated using the measured dose as a reference, and the calculated doses were used in several error simulations (no error; 2.0 or 2.5 mm systematic and random source dwell mispositioning; and dose error of 2%, 5%, 10%, and 20%). RESULTS: The dose-R2 (spin-spin relaxation rate) conversion table revealed that the uncertainty and dose resolution of 6-MV X-ray were better than those of Ir-192 and also constant between the three measurements. With the 3%/1 mm criteria, there were statistically significant differences between each pair of settings except dose error of 2% and 5%. CONCLUSION: This work depicts a simple and efficient end-to-end test that can provide a clinically useful tool for QA of image-guided brachytherapy. In this QA program, air kerma strength and dwell position setting could also be verified. This test can also distinguish between different types of error.


Asunto(s)
Braquiterapia/normas , Radioisótopos de Iridio , Garantía de la Calidad de Atención de Salud/métodos , Rayos X , Braquiterapia/métodos , Geles , Humanos , Fantasmas de Imagen , Polímeros , Dosímetros de Radiación , Radiometría/instrumentación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X
4.
Phys Med ; 57: 72-79, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30738535

RESUMEN

Rapid technological advances in high-dose-rate brachytherapy have led to a requirement for greater accuracy in treatment planning system calculations and in the verification of dose distributions. In high-dose-rate brachytherapy, it is important to measure the dose distribution in the low-dose region at a position away from the source in addition to the high-dose range in the proximity of the source. The aim of this study was to investigate the accuracy of a treatment plan designed for prostate cancer in the low-dose range using a normoxic N-vinylpyrrolidone-based polymer gel (VIPET gel) dosimeter containing inorganic salt as a sensitizer (iVIPET). The dose response was evaluated on the basis of the transverse relaxation rate (R2) measured by magnetic resonance scanning. In the verification of the treatment plan, gamma analysis showed that the dose distributions obtained from the polymer gel dosimeter were in good agreement with those calculated by the treatment planning system. The gamma passing rate according to the 2%/2 mm criterion was 97.9%. The iVIPET gel dosimeter provided better accuracy for low doses than the normal VIPET gel dosimeter, demonstrating the potential to be a useful tool for quality assurance of the dose distribution delivered by high-dose-rate brachytherapy.


Asunto(s)
Braquiterapia , Povidona , Dosis de Radiación , Radiometría/instrumentación , Dosificación Radioterapéutica , Geles , Humanos , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador
5.
Med Dosim ; 44(1): 26-29, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29395460

RESUMEN

We aimed to analyze risk factors for incidents occurring during the practice of external beam radiotherapy (EBRT) at a single Japanese center. Treatment data for EBRT from June 2014 to March 2017 were collected. Data from incident reports submitted during this period were reviewed. Near-miss cases were not included. Risk factors for incidents, including patient characteristics and treatment-related factors, were explored using uni- and multivariate analyses. Factors contributing to each incident were also retrospectively categorized according to the recommendations of the American Association of Physicists in Medicine (AAPM). A total of 2887 patients were treated during the study period, and 26 incidents occurred (0.90% per patient). Previous history of radiotherapy and large fraction size were identified as risk factors for incidents by univariate analysis. Only previous history of radiotherapy was detected as a risk factor in multivariate analysis. Identified categories of contributing factors were human behavior (50.0%), communication (40.6%), and technical (9.4%). The incident rate of EBRT was 0.90% per patient in our institution. Previous history of radiotherapy and large fraction size were detected as risk factors for incidents. Human behavior and communication errors were identified as contributing factors for most incidents.


Asunto(s)
Traumatismos por Radiación/epidemiología , Radioterapia/efectos adversos , Anciano , Femenino , Humanos , Japón/epidemiología , Masculino , Traumatismos por Radiación/etiología , Estudios Retrospectivos , Factores de Riesgo
6.
Phys Med Biol ; 63(14): 145002, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29923497

RESUMEN

The transportation accuracy of sealed radioisotope sources influences the therapeutic effect of high-dose-rate (HDR) brachytherapy. We have developed a pinhole imaging system for tracking an Ir-192 radiation source during HDR brachytherapy treatment. Our system consists of a dual-pinhole collimator, a scintillator, and a charge-coupled device (CCD) camera. We acquired stereo-shifted images to infer the source position in three dimensions using a dual pinhole collimator with 1.0 mm diameter pinholes. The CCD camera captured consecutive images of scintillation light that corresponds to the source positions every 2 s. The system automatically tracks scintillation light points using template-matching technique and measured the source positions therefrom. By integrating a series of CCD images, we could infer the source dwell time from the pixel values in the integrated image. We investigated the tracking accuracy of our system in monitoring simulated brachytherapy as it would be performed for cervical cancer by using water as a stand-in for human tissue. Ir-192 pellet was moved through a water tank using tandem and ovoid applicators. The CCD camera captured clear images of the scintillation light produced by the underwater Ir-192 source in conditions equivalent to common clinical situations. The differences between the measured and the reference 3D source positions and dwell times were 1.5 ± 0.7 mm and 0.8 ± 0.4 s, respectively. This system has the potential to track in vivo Ir-192 source in real time and may prove a useful tool for quality assurance during HDR brachytherapy treatments in clinical settings.


Asunto(s)
Braquiterapia/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Radioisótopos de Iridio/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Neoplasias del Cuello Uterino/radioterapia , Femenino , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/instrumentación , Radioterapia Guiada por Imagen/instrumentación
7.
Igaku Butsuri ; 37(3): 173-176, 2017.
Artículo en Japonés | MEDLINE | ID: mdl-29415959

RESUMEN

High-dose-rate (HDR) brachytherapy is performed with the remote after-loading system (RALS) to transport an Ir-192 source directly to inside or near the tumor. Quality assurance (QA) of equipment should be performed at sufficient frequency to ensuring safety and quality of HDR brachytherapy treatment. Polymer gel dosimeters have been attracting attention in recent years as a QA tools of HDR brachytherapy, because they can measure the three-dimensional steep dose gradients around HDR sources. In this paper, we introduce our preliminary results using VIPET polymer gel dosimeters for Ir-192 HDR brachytherapy dosimetry.


Asunto(s)
Braquiterapia , Radioisótopos de Iridio , Polímeros , Radiometría , Dosificación Radioterapéutica
8.
J Contemp Brachytherapy ; 6(2): 161-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25097556

RESUMEN

PURPOSE: The purpose of this work was to report measured catheter displacement prior to the delivery of high-dose-rate brachytherapy (HDR) in the treatment of prostate cancer. MATERIAL AND METHODS: Data from 30 prostate cancer patients treated with HDR brachytherapy were analyzed retrospectively. Eighteen transperineal hollow catheters were inserted under transrectal ultrasound guidance. Gold marker seeds were also placed transperineally into the base and apex of the prostate gland. Five treatment fractions of 7.5 Gy each were administered over 3 days. The patient underwent CT scanning prior to each treatment fraction. Catheter displacement was measured from the pre-treatment CT dataset reconstructed at 1.25 mm slice thickness. RESULTS: Most of catheters were displaced in the caudal direction. Variations of 18 catheters for each patient were small (standard deviations < 1 mm for all but one patient). Mean displacements relative to the apex marker were 6 ± 4 mm, 12 ± 6 mm, 12 ± 6 mm, 12 ± 6 mm, and 12 ± 6 mm from plan to 1(st), 2(nd), 3(rd), 4(th), and 5(th) fractions, respectively. CONCLUSIONS: Our results indicate that catheter positions must be confirmed and if required, adjusted, prior to every treatment fraction for the precise treatment delivery of HDR brachytherapy, and to potentially reduce over-dosage to the bulbo-membranous urethra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA