Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Rheumatology (Oxford) ; 59(Suppl 3): iii17-iii27, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348525

RESUMEN

For decades, the treatment of GCA has relied on glucocorticoids. Work over the past two decades has supported a modest efficacy of MTX but no clear benefit from anti-TNF-based therapies. More recently, the therapeutic armamentarium for GCA has expanded. The availability of agents targeting specific cytokines, cytokine receptors or signalling pathways, along with a better, although still limited, understanding of the immunopathology of GCA, are opening further therapeutic possibilities. Blocking IL-6 receptor with tocilizumab has been effective in maintaining remission and reducing glucocorticoid exposure and tocilizumab has been approved for the treatment of GCA. However, nearly half of the patients do not benefit from tocilizumab and additional options need to be investigated. This review focuses on standard therapeutic approaches and on targeted therapies that have been or are currently under investigation.


Asunto(s)
Arteritis de Células Gigantes/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Terapia Molecular Dirigida , Humanos
2.
Mol Oncol ; 13(11): 2441-2459, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31545551

RESUMEN

Advanced colorectal carcinoma is currently incurable, and new therapies are urgently needed. We report that phosphotyrosine-dependent Eph receptor signaling sustains colorectal carcinoma cell survival, thereby uncovering a survival pathway active in colorectal carcinoma cells. We find that genetic and biochemical inhibition of Eph tyrosine kinase activity or depletion of the Eph ligand EphrinB2 reproducibly induces colorectal carcinoma cell death by autophagy. Spautin and 3-methyladenine, inhibitors of early steps in the autophagic pathway, significantly reduce autophagy-mediated cell death that follows inhibition of phosphotyrosine-dependent Eph signaling in colorectal cancer cells. A small-molecule inhibitor of the Eph kinase, NVP-BHG712 or its regioisomer NVP-Iso, reduces human colorectal cancer cell growth in vitro and tumor growth in mice. Colorectal cancers express the EphrinB ligand and its Eph receptors at significantly higher levels than numerous other cancer types, supporting Eph signaling inhibition as a potential new strategy for the broad treatment of colorectal carcinoma.


Asunto(s)
Autofagia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Terapia Molecular Dirigida , Receptores de la Familia Eph/metabolismo , Transducción de Señal , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Efrina-B2/metabolismo , Femenino , Silenciador del Gen/efectos de los fármacos , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia
3.
Rheumatology (Oxford) ; 57(suppl_2): ii51-ii62, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982777

RESUMEN

GCA is a chronic granulomatous vasculitis that affects large- and medium-sized vessels. Both the innate and the adaptive immune system are thought to play an important role in the initial events of the pathogenesis of GCA. Amplification cascades are involved in the subsequent development and progression of the disease, resulting in vascular inflammation, remodelling and occlusion. The development of large-vessel vasculitis in genetically modified mice has provided some evidence regarding potential mechanisms that lead to vascular inflammation. However, the participation of specific mechanistic pathways in GCA has not been fully established because of the paucity and limitations of functional models. Treatment of GCA is evolving, and novel therapies are being incorporated into the GCA treatment landscape. In addition, to improve the management of GCA, targeted therapies are providing functional proof of concept of the relevance of particular pathogenic mechanisms in the development of GCA and in sustaining vascular inflammation.


Asunto(s)
Arteritis de Células Gigantes/inmunología , Inmunidad Adaptativa/fisiología , Animales , Arterias/inmunología , Arteritis de Células Gigantes/tratamiento farmacológico , Humanos , Inmunidad Innata/fisiología , Inflamación , Ratones , Transducción de Señal/inmunología
4.
Front Immunol ; 9: 809, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29731755

RESUMEN

Background: Giant-cell arteritis (GCA) is considered a T helper (Th)1- and Th17-mediated disease. Interleukin (IL)-12 is a heterodimeric cytokine (p35/p40) involved in Th1 differentiation. When combining with p19 subunit, p40 compose IL-23, a powerful pro-inflammatory cytokine that maintains Th17 response. Objectives: The aims of this study were to investigate p40, p35, and p19 subunit expression in GCA lesions and their combinations to conform different cytokines, to assess the effect of glucocorticoid treatment on subunit expression, and to explore functional roles of p40 by culturing temporal artery sections with a neutralizing anti-human IL-12/IL-23p40 antibody. Methods and results: p40 and p19 mRNA concentrations measured by real-time RT-PCR were significantly higher in temporal arteries from 50 patients compared to 20 controls (4.35 ± 4.06 vs 0.51 ± 0.75; p < 0.0001 and 20.32 ± 21.78 vs 4.17 ± 4.43 relative units; p < 0.0001, respectively). No differences were found in constitutively expressed p35 mRNA. Contrarily, p40 and p19 mRNAs were decreased in temporal arteries from 16 treated GCA patients vs those from 34 treatment-naïve GCA patients. Accordingly, dexamethasone reduced p40 and p19 expression in cultured arteries. Subunit associations to conform IL-12 and IL-23 were confirmed by proximity-ligation assay in GCA lesions. Immunofluorescence revealed widespread p19 and p35 expression by inflammatory cells, independent from p40. Blocking IL-12/IL-23p40 tended to reduce IFNγ and IL-17 mRNA production by cultured GCA arteries and tended to increase Th17 inducers IL-1ß and IL-6. Conclusion: IL-12 and IL-23 heterodimers are increased in GCA lesions and decrease with glucocorticoid treatment. p19 and p35 subunits are much more abundant than p40, indicating an independent role for these subunits or their potential association with alternative subunits. The modest effect of IL-12/IL-23p40 neutralization may indicate compensation by redundant cytokines or cytokines resulting from alternative combinations.


Asunto(s)
Arteritis de Células Gigantes/inmunología , Subunidad p35 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/genética , Subunidad p19 de la Interleucina-23/genética , Células TH1/inmunología , Células Th17/inmunología , Anciano , Anciano de 80 o más Años , Células Cultivadas , Citocinas , Femenino , Arteritis de Células Gigantes/patología , Glucocorticoides/uso terapéutico , Humanos , Subunidad p35 de la Interleucina-12/inmunología , Subunidad p40 de la Interleucina-12/inmunología , Subunidad p19 de la Interleucina-23/inmunología , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Arterias Temporales/efectos de los fármacos , Arterias Temporales/inmunología , Células TH1/efectos de los fármacos , Células Th17/efectos de los fármacos
5.
Eur J Intern Med ; 50: 12-19, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29146018

RESUMEN

Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are the two main large vessel vasculitides. They share some similarities regarding their clinical, radiological and histological presentations but some pathogenic processes in GCA and TAK are activated differently, thus explaining their different sensitivity to biological therapies. The treatment of GCA and TAK essentially relies on glucocorticoids. However, thanks to major progress in our understanding of their pathogenesis, the role of biological therapies in the treatment of these two vasculitides is expanding, especially in relapsing or refractory diseases. In this review, the efficacy, the safety and the limits of the main biological therapies ever tested in GCA and TAK are discussed. Briefly, anti TNF-α agents appear to be effective in treating TAK but not GCA. Recent randomized placebo-controlled trials have reported on the efficacy and safety of abatacept and mostly tocilizumab in inducing and maintaining remission of GCA. Abatacept was not effective in TAK and robust data are still lacking to draw any conclusions concerning the use of tocilizumab in TAK. Furthermore, ustekinumab appears promising in relapsing/refractory GCA whereas rituximab has been reported to be effective in only a few cases of refractory TAK patients. If a biological therapy is indicated, and in light of the data discussed in this review, the first choice would be tocilizumab in GCA and anti-TNF-α agents (mainly infliximab) in TAK.


Asunto(s)
Terapia Biológica , Arteritis de Células Gigantes/terapia , Arteritis de Takayasu/terapia , Anticuerpos Monoclonales Humanizados/uso terapéutico , Glucocorticoides/uso terapéutico , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
6.
Ann Rheum Dis ; 76(9): 1624-1634, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28606962

RESUMEN

BACKGROUND: Giant-cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries, frequently involving the temporal arteries (TA). Inflammation-induced vascular remodelling leads to vaso-occlusive events. Circulating endothelin-1 (ET-1) is increased in patients with GCA with ischaemic complications suggesting a role for ET-1 in vascular occlusion beyond its vasoactive function. OBJECTIVE: To investigate whether ET-1 induces a migratory myofibroblastic phenotype in human TA-derived vascular smooth muscle cells (VSMC) leading to intimal hyperplasia and vascular occlusion in GCA. METHODS AND RESULTS: Immunofluorescence/confocal microscopy showed increased ET-1 expression in GCA lesions compared with control arteries. In inflamed arteries, ET-1 was predominantly expressed by infiltrating mononuclear cells whereas ET receptors, particularly ET-1 receptor B (ETBR), were expressed by both mononuclear cells and VSMC. ET-1 increased TA-derived VSMC migration in vitro and α-smooth muscle actin (αSMA) expression and migration from the media to the intima in cultured TA explants. ET-1 promoted VSMC motility by increasing activation of focal adhesion kinase (FAK), a crucial molecule in the turnover of focal adhesions during cell migration. FAK activation resulted in Y397 autophosphorylation creating binding sites for Src kinases and the p85 subunit of PI3kinases which, upon ET-1 exposure, colocalised with FAK at the focal adhesions of migrating VSMC. Accordingly, FAK or PI3K inhibition abrogated ET-1-induced migration in vitro. Consistently, ET-1 receptor A and ETBR antagonists reduced αSMA expression and delayed VSMC outgrowth from cultured GCA-involved artery explants. CONCLUSIONS: ET-1 is upregulated in GCA lesions and, by promoting VSMC migration towards the intimal layer, may contribute to intimal hyperplasia and vascular occlusion in GCA.


Asunto(s)
Movimiento Celular/genética , Endotelina-1/genética , Arteritis de Células Gigantes/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Remodelación Vascular/genética , Actinas/efectos de los fármacos , Actinas/genética , Actinas/metabolismo , Anciano , Western Blotting , Estudios de Casos y Controles , Movimiento Celular/efectos de los fármacos , Antagonistas de los Receptores de Endotelina/farmacología , Endotelina-1/metabolismo , Endotelina-1/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Arteritis de Células Gigantes/metabolismo , Arteritis de Células Gigantes/patología , Humanos , Hiperplasia , Técnicas In Vitro , Leucocitos Mononucleares , Masculino , Microscopía Confocal , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Receptor de Endotelina A/efectos de los fármacos , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Túnica Íntima/patología , Remodelación Vascular/efectos de los fármacos , Familia-src Quinasas/metabolismo
7.
RMD Open ; 3(2): e000570, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29299342

RESUMEN

BACKGROUND: Osteopontin (OPN) is a glycoprotein involved in Th1 and Th17 differentiation, tissue inflammation and remodelling. We explored the role of serum OPN (sOPN) as a biomarker in patients with giant cell arteritis (GCA). METHODS: sOPN was measured by immunoassay in 76 treatment-naïve patients with GCA and 25 age-matched and sex-matched controls. In 36 patients, a second measurement was performed after 1 year of glucocorticoid treatment. Baseline clinical and laboratory findings, as well as relapses and glucocorticoid requirements during follow-up, were prospectively recorded. sOPN and C reactive protein (CRP) were measured in 32 additional patients in remission treated with glucocorticoids or tocilizumab (interleukin 6 (IL-6) receptor antagonist). In cultured temporal arteries exposed and unexposed to tocilizumab, OPN mRNA expression and protein production were measured by reverse transcription polymerase chain reaction (RT-PCR) and immunoassay, respectively. RESULTS: sOPN concentration (ng/mL; mean±SD) was significantly elevated in patients with active disease (116.75±65.61) compared with controls (41.10±22.65; p<0.001). A significant decline in sOPN was observed in paired samples as patients entered disease remission (active disease 102.45±57.72, remission 46.47±23.49; p<0.001). sOPN correlated with serum IL-6 (r=0.55; p<0.001). Baseline sOPN concentrations were significantly higher in relapsing versus non-relapsing patients (relapsers 129.08±74.24, non-relapsers 90.63±41.02; p=0.03). OPN mRNA expression and protein production in cultured arteries were not significantly modified by tocilizumab. In tocilizumab-treated patients, CRP became undetectable, whereas sOPN was similar in patients in tocilizumab-maintained (51.91±36.25) or glucocorticoid-maintained remission (50.65±23.59; p=0.49). CONCLUSIONS: sOPN is a marker of disease activity and a predictor of relapse in GCA. Since OPN is not exclusively IL-6-dependent, sOPN might be a suitable disease activity biomarker in tocilizumab-treated patients.

8.
Ann Rheum Dis ; 75(6): 1177-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26698852

RESUMEN

BACKGROUND: Interferon γ (IFNγ) is considered a seminal cytokine in the pathogenesis of giant cell arteritis (GCA), but its functional role has not been investigated. We explored changes in infiltrating cells and biomarkers elicited by blocking IFNγ with a neutralising monoclonal antibody, A6, in temporal arteries from patients with GCA. METHODS: Temporal arteries from 34 patients with GCA (positive histology) and 21 controls were cultured on 3D matrix (Matrigel) and exposed to A6 or recombinant IFNγ. Changes in gene/protein expression were measured by qRT-PCR/western blot or immunoassay. Changes in infiltrating cells were assessed by immunohistochemistry/immunofluorescence. Chemotaxis/adhesion assays were performed with temporal artery-derived vascular smooth muscle cells (VSMCs) and peripheral blood mononuclear cells (PBMCs). RESULTS: Blocking endogenous IFNγ with A6 abrogated STAT-1 phosphorylation in cultured GCA arteries. Furthermore, selective reduction in CXCL9, CXCL10 and CXCL11 chemokine expression was observed along with reduction in infiltrating CD68 macrophages. Adding IFNγ elicited consistent opposite effects. IFNγ induced CXCL9, CXCL10, CXCL11, CCL2 and intracellular adhesion molecule-1 expression by cultured VSMC, resulting in increased PBMC chemotaxis/adhesion. Spontaneous expression of chemokines was higher in VSMC isolated from GCA-involved arteries than in those obtained from controls. Incubation of IFNγ-treated control arteries with PBMC resulted in adhesion/infiltration by CD68 macrophages, which did not occur in untreated arteries. CONCLUSIONS: Our ex vivo system suggests that IFNγ may play an important role in the recruitment of macrophages in GCA by inducing production of specific chemokines and adhesion molecules. Vascular wall components (ie, VSMC) are mediators of these functions and may facilitate progression of inflammatory infiltrates through the vessel wall.


Asunto(s)
Quimiocinas CXC/metabolismo , Arteritis de Células Gigantes/inmunología , Interferón gamma/antagonistas & inhibidores , Macrófagos/inmunología , Anciano , Anciano de 80 o más Años , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocinas CXC/genética , Quimiotaxis/inmunología , Regulación hacia Abajo/inmunología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/biosíntesis , Interferón gamma/farmacología , Masculino , Músculo Liso Vascular/inmunología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Arterias Temporales/inmunología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA