Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3919, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724503

RESUMEN

Biological macromolecules can condense into liquid domains. In cells, these condensates form membraneless organelles that can organize chemical reactions. However, little is known about the physical consequences of chemical activity in and around condensates. Working with model bovine serum albumin (BSA) condensates, we show that droplets swim along chemical gradients. Active BSA droplets loaded with urease swim toward each other. Passive BSA droplets show diverse responses to externally applied gradients of the enzyme's substrate and products. In all these cases, droplets swim toward solvent conditions that favor their dissolution. We call this behavior "dialytaxis", and expect it to be generic, as conditions which favor dissolution typically reduce interfacial tension, whose gradients are well-known to drive droplet motion through the Marangoni effect. These results could potentially suggest alternative physical mechanisms for active transport in living cells, and may enable the design of fluid micro-robots.


Asunto(s)
Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Animales , Ureasa/metabolismo , Ureasa/química , Solubilidad , Bovinos , Solventes/química , Tensión Superficial
2.
Nature ; 627(8002): 204-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383787

RESUMEN

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteolisis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Nat Chem Biol ; 20(2): 134-135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37919550
4.
Langmuir ; 39(41): 14626-14637, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37797324

RESUMEN

Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.

5.
ChemMedChem ; 18(20): e202300464, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37817354

RESUMEN

The 17th EFMC Short Course on Medicinal Chemistry took place April 23-26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.


Asunto(s)
Química Farmacéutica , Diseño de Fármacos , Europa (Continente) , Proteolisis , Sudáfrica
6.
Nat Commun ; 14(1): 6345, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816714

RESUMEN

The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.


Asunto(s)
Proteínas , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Fosfotirosina , Ligandos , Dominios Homologos src
7.
Artículo en Inglés | MEDLINE | ID: mdl-36673922

RESUMEN

This study investigates changes in physical activity (PA) and sedentary behavior in an Italian university community during Phase 1 of SARS-CoV-2 lockdown ("stay at home" government decree, from March 8th to May 4th, 2020) compared to their habits prior to the COVID-19 pandemic. We also examine differences according to gender, university position, BMI categories, and sport participation. A total of 2596 people (median age 24, IQR 11 years; 70.8% women) filled out a survey after eight weeks of statutory confinement at home. The International Physical Activity Questionnaire measured PA and sedentary behavior in a typical week before and during lockdown. Physically inactive people passed from 10.9% to 35.0% before−during the lockdown. The total amount of PA decreased (median 2307 vs. 1367 MET-min/week; p < 0.001), while sedentary behavior increased (median 349 vs. 440 min/day; p < 0.001) between before and during the lockdown. The following categories showed a higher reduction in the total amount of PA: men when compared to women; people with normal weight when compared to pre-obese/obese people; and people who played sports when compared to those who did not play sports. There is a need to propose PA/exercise programs to counteract physical inactivity and sedentarism during a social emergency, with special attention to people who showed higher PA reduction.


Asunto(s)
COVID-19 , Masculino , Humanos , Femenino , Adulto Joven , Adulto , COVID-19/epidemiología , Conducta Sedentaria , SARS-CoV-2 , Pandemias , Control de Enfermedades Transmisibles , Ejercicio Físico , Obesidad/epidemiología , Italia/epidemiología
8.
Nat Chem Biol ; 19(3): 323-333, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329119

RESUMEN

Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined 'functional hotspots'. Understanding disruptive mutations in functional hotspots informs on the architecture of the assembly, and highlights residues susceptible to acquire resistance phenotypes. Here we employ haploid genetics to show that hotspot mutations cluster in substrate receptors of hijacked ligases, where mutation type and frequency correlate with gene essentiality. Intersection with deep mutational scanning revealed hotspots that are conserved or specific for chemically distinct degraders and targets. Biophysical and structural validation suggests that hotspot mutations frequently converge on altered ternary complex assembly. Moreover, we validated hotspots mutated in patients that relapse from degrader treatment. In sum, we present a fast and widely accessible methodology to characterize small-molecule degraders and associated resistance mechanisms.


Asunto(s)
Proteínas Portadoras , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Proteínas Portadoras/metabolismo
9.
Nat Commun ; 13(1): 2073, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440107

RESUMEN

Modulation of protein abundance using tag-Targeted Protein Degrader (tTPD) systems targeting FKBP12F36V (dTAGs) or HaloTag7 (HaloPROTACs) are powerful approaches for preclinical target validation. Interchanging tags and tag-targeting degraders is important to achieve efficient substrate degradation, yet limited degrader/tag pairs are available and side-by-side comparisons have not been performed. To expand the tTPD repertoire we developed catalytic NanoLuc-targeting PROTACs (NanoTACs) to hijack the CRL4CRBN complex and degrade NanoLuc tagged substrates, enabling rapid luminescence-based degradation screening. To benchmark NanoTACs against existing tTPD systems we use an interchangeable reporter system to comparatively test optimal degrader/tag pairs. Overall, we find the dTAG system exhibits superior degradation. To align tag-induced degradation with physiology we demonstrate that NanoTACs limit MLKL-driven necroptosis. In this work we extend the tTPD platform to include NanoTACs adding flexibility to tTPD studies, and benchmark each tTPD system to highlight the importance of comparing each system against each substrate.


Asunto(s)
Benchmarking , Proteína 1A de Unión a Tacrolimus , Luciferasas , Proteolisis , Proteína 1A de Unión a Tacrolimus/genética
10.
Nat Commun ; 12(1): 6293, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725341

RESUMEN

Living cells harvest energy from their environments to drive the chemical processes that enable life. We introduce a minimal system that operates at similar protein concentrations, metabolic densities, and length scales as living cells. This approach takes advantage of the tendency of phase-separated protein droplets to strongly partition enzymes, while presenting minimal barriers to transport of small molecules across their interface. By dispersing these microreactors in a reservoir of substrate-loaded buffer, we achieve steady states at metabolic densities that match those of the hungriest microorganisms. We further demonstrate the formation of steady pH gradients, capable of driving microscopic flows. Our approach enables the investigation of the function of diverse enzymes in environments that mimic cytoplasm, and provides a flexible platform for studying the collective behavior of matter driven far from equilibrium.


Asunto(s)
Células Artificiales/química , Hidroliasas/metabolismo , Nanopartículas/química , Ureasa/metabolismo , Células Artificiales/metabolismo , Catálisis , Humanos , Hidroliasas/química , Modelos Biológicos , Ureasa/química
11.
J Med Chem ; 64(20): 15477-15502, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34652918

RESUMEN

Small-molecule-induced protein depletion technologies, also called inducible degrons, allow degradation of genetically engineered target proteins within cells and animals. Here, we design and develop the BromoTag, a new inducible degron system comprising a Brd4 bromodomain L387A variant as a degron tag that allows direct recruitment by heterobifunctional bumped proteolysis targeting chimeras (PROTACs) to hijack the VHL E3 ligase. We describe extensive optimization and structure-activity relationships of our bump-and-hole-PROTACs using a CRISPR knock-in cell line expressing model target BromoTag-Brd2 at endogenous levels. Collectively, our cellular and mechanistic data qualifies bumped PROTAC AGB1 as a potent, fast, and selective degrader of BromoTagged proteins, with a favorable pharmacokinetic profile in mice. The BromoTag adds to the arsenal of chemical genetic degradation tools allowing us to manipulate protein levels to interrogate the biological function and therapeutic potential in cells and in vivo.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Desarrollo de Medicamentos , Proteolisis/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
12.
Nat Chem Biol ; 17(11): 1157-1167, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675414

RESUMEN

Bivalent proteolysis-targeting chimeras (PROTACs) drive protein degradation by simultaneously binding a target protein and an E3 ligase and forming a productive ternary complex. We hypothesized that increasing binding valency within a PROTAC could enhance degradation. Here, we designed trivalent PROTACs consisting of a bivalent bromo and extra terminal (BET) inhibitor and an E3 ligand tethered via a branched linker. We identified von Hippel-Lindau (VHL)-based SIM1 as a low picomolar BET degrader with preference for bromodomain containing 2 (BRD2). Compared to bivalent PROTACs, SIM1 showed more sustained and higher degradation efficacy, which led to more potent anticancer activity. Mechanistically, SIM1 simultaneously engages with high avidity both BET bromodomains in a cis intramolecular fashion and forms a 1:1:1 ternary complex with VHL, exhibiting positive cooperativity and high cellular stability with prolonged residence time. Collectively, our data along with favorable in vivo pharmacokinetics demonstrate that augmenting the binding valency of proximity-induced modalities can be an enabling strategy for advancing functional outcomes.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Proteolisis
13.
Drug Discov Today ; 26(12): 2889-2897, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34419629

RESUMEN

The transformational mechanism of action underpinning targeted protein degradation strategies, including proteolysis-targeting chimeras (PROTACs), gives potential for potent in vivo pharmacology and has allowed projects to move rapidly to the clinic. Despite this remarkable progress, there remain many opportunities to improve current, first-generation approaches even further. Our expanding knowledge will allow discovery of new degrading mechanisms with potential to address several limitations of current approaches, including improving scope and efficiency of degradation, improving drug-like properties of degraders, and reducing potential for the emergence of acquired resistance. Here, we discuss potential routes to realize these advances to expand TPD utility even further.


Asunto(s)
Desarrollo de Medicamentos/métodos , Proteínas/metabolismo , Proteolisis , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Resistencia a Medicamentos , Humanos
14.
Artículo en Inglés | MEDLINE | ID: mdl-33805640

RESUMEN

In Italy, COVID-19 lockdown was imposed from 8 March until 3 May 2020 with negative consequences on the lifestyles and health of people. Within this context, the paper aims: (i) to analyse the impact of COVID-19 lockdown on perceived weight changes; (ii) to evaluate factors associated with the perception of weight changes (Body Mass Index (BMI), sleep quality, time spent in sedentary activities), in an Italian academic community of students and workers. A total of 3666 participants took part in this cross-sectional study (2838 students and 828 workers, of whom 73.0% were female). T-test, Chi-square test and the two-way ANOVA were used. Results showed that 43.3% of participants perceived a weight gain. Workers experienced a more substantial increase in body weight (0.7 kg) compared to students (0.3 kg; p = 0.013). A significant difference between preobese/obese workers (0.9 kg) and students (-0.3 kg; p < 0.001) was found. Overall, 57.0% of the sample was characterized by high levels of sedentary activities. Sedentary people noticed a higher weight gain (0.4 kg) compared to less sedentary people (0.3 kg; p = 0.048). More than 45% of participants reported a worsening of sleep quality and showed a perceived increase in body weight (0.5 kg) in comparison to those who improved their sleep quality (no weight change; p = 0.001). Designing tailored interventions to promote health-related behaviours during lockdown periods is essential.


Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles , Estudios Transversales , Femenino , Humanos , Italia/epidemiología , Masculino , SARS-CoV-2 , Sueño
15.
Explor Target Antitumor Ther ; 2(6): 586-601, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36046113

RESUMEN

Aim: Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that play a fundamental role in transcription regulation. Preclinical and early clinical evidence sustain BET targeting as an anti-cancer approach. BET degraders are chimeric compounds comprising of a BET inhibitor, which allows the binding to BET bromodomains, linked to a small molecule, binder for an E3 ubiquitin ligase complex, triggering BET proteins degradation via the proteasome. These degraders, called proteolysis-targeting chimeras (PROTACs), can exhibit greater target specificity compared to BET inhibitors and overcome some of their limitations, such as the upregulation of the BET proteins themselves. Here are presented data on the anti-tumor activity and the mechanism of action of the BET degrader MZ1 in diffuse large B cell lymphoma (DLBCL) of the activated B-cell like (ABC, ABC DLBCL), using a BET inhibitor as a comparison. Methods: Established lymphoma cell lines were exposed for 72 h to increasing doses of the compounds. Cell proliferation was evaluated by using an 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide (MTT) assay. Fluorescent-Activated Cell Sorter (FACS) analysis was performed to measure apoptotic activation and RNA sequencing (RNA-Seq) to study the transcriptional changes induced by the compounds. Results: MZ1, and not its negative control epimer cisMZ1, was very active with a median half maximal inhibitory concentration (IC50) of 49 nmol/L. MZ1 was more in vitro active than the BET inhibitor birabresib (OTX015). Importantly, MZ1 induced cell death in all the ABC DLBCL cell lines, while the BET inhibitor was cytotoxic only in a fraction of them. BET degrader and inhibitor shared partially similar changes at transcriptome level but the MZ1 effect was stronger and overlapped with that caused cyclin-dependent kinase 9 (CDK9) inhibition. Conclusions: The BET degrader MZ1 had strong cytotoxic activity in all the ABC DLBCL cell lines that were tested, and, at least in vitro, it elicited more profound effects than BET inhibitors, and encourages further investigations.

16.
ACS Med Chem Lett ; 11(9): 1732-1738, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32939229

RESUMEN

Proteolysis targeting chimeras (PROTACs) are catalytic heterobifunctional molecules that can selectively degrade a protein of interest by recruiting a ubiquitin E3 ligase to the target, leading to its ubiquitylation and degradation by the proteasome. Most degraders lie outside the chemical space associated with most membrane-permeable drugs. Although many PROTACs have been described with potent activity in cells, our understanding of the relationship between structure and permeability in these compounds remains limited. Here, we describe a label-free method for assessing the permeability of several VH032-based PROTACs and their components by combining a parallel artificial membrane permeability assay (PAMPA) and a lipophilic permeability efficiency (LPE) metric. Our results show that the combination of these two cell-free membrane permeability assays provides new insight into PROTAC structure-permeability relationships and offers a conceptual framework for predicting the physicochemical properties of PROTACs in order to better inform the design of more permeable and more effective degraders.

17.
Org Biomol Chem ; 18(38): 7533-7539, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32756710

RESUMEN

Developing stereoselective synthetic routes that are efficient and cost-effective allows easy access to biologically active molecules. Our previous syntheses of allele-selective bumped inhibitors of the Bromo and Extra-Terminal (BET) domain proteins, Brd2, Brd3, Brd4 and BrdT, required a wasteful, late-stage alkylation step and expensive chiral separation. To circumvent these limitations, we developed a route based on stereocontrolled alkylation of an N-Pf protected aspartic acid derivative that was used in a divergent, racemisation-free protocol to yield structurally diverse and enantiopure triazolodiazepines. With this approach, we synthesized bumped thienodiazepine-based BET inhibitor, ET-JQ1-OMe, in five steps and 99% ee without the need for chiral chromatography. Exquisite selectivity of ET-JQ1-OMe for Leu-Ala and Leu-Val mutants over wild-type bromodomain was established by isothermal titration calorimetry and X-ray crystallography. Our new approach provides unambiguous chemical evidence for the absolute stereochemistry of the active, allele-specific BET inhibitors and a viable route that will open wider access to this compound class.


Asunto(s)
Proteínas Nucleares
18.
Cell Chem Biol ; 27(9): 1164-1180.e5, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32668203

RESUMEN

The affinity-directed protein missile (AdPROM) system utilizes specific polypeptide binders of intracellular proteins of interest (POIs) conjugated to an E3 ubiquitin ligase moiety to enable targeted proteolysis of the POI. However, a chemically tuneable AdPROM system is more desirable. Here, we use Halo-tag/VHL-recruiting proteolysis-targeting chimera (HaloPROTAC) technology to develop a ligand-inducible AdPROM (L-AdPROM) system. When we express an L-AdPROM construct consisting of an anti-GFP nanobody conjugated to the Halo-tag, we achieve robust degradation of GFP-tagged POIs only upon treatment of cells with the HaloPROTAC. For GFP-tagged POIs, ULK1, FAM83D, and SGK3 were knocked in with a GFP-tag using CRISPR/Cas9. By substituting the anti-GFP nanobody for a monobody that binds H- and K-RAS, we achieve robust degradation of unmodified endogenous RAS proteins only in the presence of the HaloPROTAC. Through substitution of the polypeptide binder, the highly versatile L-AdPROM system is useful for the inducible degradation of potentially any intracellular POI.


Asunto(s)
Proteolisis , Anticuerpos de Cadena Única/metabolismo , Marcadores de Afinidad , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/química , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Ubiquitinación , Proteínas ras/metabolismo
19.
Angew Chem Int Ed Engl ; 59(4): 1727-1734, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31746102

RESUMEN

Constraining a molecule in its bioactive conformation via macrocyclization represents an attractive strategy to rationally design functional chemical probes. While this approach has been applied to enzyme inhibitors or receptor antagonists, to date it remains unprecedented for bifunctional molecules that bring proteins together, such as PROTAC degraders. Herein, we report the design and synthesis of a macrocyclic PROTAC by adding a cyclizing linker to the BET degrader MZ1. A co-crystal structure of macroPROTAC-1 bound in a ternary complex with VHL and the second bromodomain of Brd4 validated the rational design. Biophysical studies revealed enhanced discrimination between the second and the first bromodomains of BET proteins. Despite a 12-fold loss of binary binding affinity for Brd4, macroPROTAC-1 exhibited cellular activity comparable to MZ1. Our findings support macrocyclization as an advantageous strategy to enhance PROTAC degradation potency and selectivity between homologous targets.


Asunto(s)
Diseño de Fármacos , Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Estructura Molecular , Conformación Proteica
20.
ACS Chem Biol ; 14(9): 2024-2034, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31461270

RESUMEN

SGK3 is a PX domain containing protein kinase activated at endosomes downstream of class 1 and 3 PI3K family members by growth factors and oncogenic mutations. SGK3 plays a key role in mediating resistance of breast cancer cells to class 1 PI3K or Akt inhibitors, by substituting for the loss of Akt activity and restoring proliferative pathways such as mTORC1 signaling. It is therefore critical to develop tools to potently target SGK3 and obstruct its role in inhibitor resistance. Here, we describe the development of SGK3-PROTAC1, a PROTAC conjugate of the 308-R SGK inhibitor with the VH032 VHL binding ligand, targeting SGK3 for degradation.  SGK3-PROTAC1 (0.3 µM) induced 50% degradation of endogenous SGK3 within 2 h, with maximal 80% degradation observed within 8 h, accompanied by a loss of phosphorylation of NDRG1, an SGK3 substrate. SGK3-PROTAC1 did not degrade closely related SGK1 and SGK2 isoforms that are nevertheless engaged and inhibited by 308-R. Proteomic analysis revealed that SGK3 was the only cellular protein whose cellular levels were significantly reduced following treatment with SGK3-PROTAC1. Low doses of SGK3-PROTAC1 (0.1-0.3 µM) restored sensitivity of SGK3 dependent ZR-75-1 and CAMA-1 breast cancer cells to Akt (AZD5363) and PI3K (GDC0941) inhibitors, whereas the cis epimer analogue incapable of binding to the VHL E3 ligase had no impact. SGK3-PROTAC1 suppressed proliferation of ZR-75-1 and CAMA-1 cancer cell lines treated with a PI3K inhibitor (GDC0941) more effectively than could be achieved by a conventional SGK isoform inhibitor (14H). This work underscores the benefit of the PROTAC approach in targeting protein kinase signaling pathways with greater efficacy and selectivity than can be achieved with conventional inhibitors. SGK3-PROTAC1 will be an important reagent to explore the roles of the SGK3 pathway.


Asunto(s)
Dipéptidos/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Sulfonamidas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Humanos , Indazoles/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/farmacología , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA