Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Biomed Eng ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874705

RESUMEN

Aortic valve (AV) disease is a common valvular lesion in the United States, present in about 5% of the population at age 65 with increasing prevalence with advancing age. While current replacement heart valves have extended life for many, their long-term use remains hampered by limited durability. Non-surgical treatments for AV disease do not yet exist, in large part because our understanding of AV disease etiology remains incomplete. The direct study of human AV disease remains hampered by the fact that clinical data is only available at the time of treatment, where the disease is at or near end stage and any time progression information has been lost. Large animal models, long used to assess replacement AV devices, cannot yet reproduce AV disease processes. As an important alternative mouse animal models are attractive for their ability to perform genetic studies of the AV disease processes and test potential pharmaceutical treatments. While mouse models have been used for cellular and genetic studies of AV disease, their small size and fast heart rates have hindered their use for tissue- and organ-level studies. We have recently developed a novel ex vivo micro-CT-based methodology to 3D reconstruct murine heart valves and estimate the leaflet mechanical behaviors (Feng et al. in Sci Rep 13(1):12852, 2023). In the present study, we extended our approach to 3D reconstruction of the in vivo functional murine AV (mAV) geometry using high-frequency four-dimensional ultrasound (4DUS). From the resulting 4DUS images we digitized the mAV mid-surface coordinates in the fully closed and fully opened states. We then utilized matched high-resolution µCT images of ex vivo mouse mAV to develop mAV NURBS-based geometric model. We then fitted the mAV geometric model to the in vivo data to reconstruct the 3D in vivo mAV geometry in the closed and open states in n = 3 mAV. Results demonstrated high fidelity geometric results. To our knowledge, this is the first time such reconstruction was ever achieved. This robust assessment of in vivo mAV leaflet kinematics in 3D opens up the possibility for longitudinal characterization of murine models that develop aortic valve disease.

2.
J Cardiovasc Dev Dis ; 10(8)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37623368

RESUMEN

Organization of extracellular matrix (ECM) components, including collagens, proteoglycans, and elastin, is essential for maintaining the structure and function of heart valves throughout life. Mutations in ECM genes cause connective tissue disorders, including Osteogenesis Imperfecta (OI), and progressive debilitating heart valve dysfunction is common in these patients. Despite this, effective treatment options are limited to end-stage interventions. Mice with a homozygous frameshift mutation in col1a2 serve as a murine model of OI (oim/oim), and therefore, they were used in this study to examine the pathobiology of aortic valve (AoV) disease in this patient population at structural, functional, and molecular levels. Temporal echocardiography of oim/oim mice revealed AoV dysfunction by the late stages of disease in 12-month-old mice. However, structural and proteomic changes were apparent much earlier, at 3 months of age, and were associated with disturbances in ECM homeostasis primarily related to collagen and proteoglycan abnormalities and disorganization. Together, findings from this study provide insights into the underpinnings of late onset AoV dysfunction in connective tissue disease patients that can be used for the development of mechanistic-based therapies administered early to halt progression, thereby avoiding late-stage surgical intervention.

3.
J Mol Cell Cardiol ; 183: 1-13, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37579636

RESUMEN

Cardiovascular calcification can occur in vascular and valvular structures and is commonly associated with calcium deposition and tissue mineralization leading to stiffness and dysfunction. Patients with chronic kidney disease and associated hyperphosphatemia have an elevated risk for coronary artery calcification (CAC) and calcific aortic valve disease (CAVD). However, there is mounting evidence to suggest that the susceptibility and pathobiology of calcification in these two cardiovascular structures may be different, yet clinically they are similarly treated. To better understand diversity in molecular and cellular processes that underlie hyperphosphatemia-induced calcification in vascular and valvular structures, we exposed aortic vascular smooth muscle cells (AVSMCs) and aortic valve interstitial cells (AVICs) to high (2.5 mM) phosphate (Ph) conditions in vitro, and examined cell-specific responses. To further identify hyperphosphatemic-specific responses, parallel studies were performed using osteogenic media (OM) as an alternative calcific stimulus. Consistent with clinical observations made by others, we show that AVSMCs are more susceptible to calcification than AVICs. In addition, bulk RNA-sequencing reveals that AVSMCs and AVICs activate robust ossification-programs in response to high phosphate or OM treatments, however, the signaling pathways, cellular processes and osteogenic-associated markers involved are cell- and treatment-specific. For example, compared to VSMCs, VIC-mediated calcification involves biological processes related to osteo-chondro differentiation and down regulation of 'actin cytoskeleton'-related genes, that are not observed in VSMCs. Furthermore, hyperphosphatemic-induced calcification in AVICs and AVSMCs is independent of P13K signaling, which plays a role in OM-treated cells. Together, this study provides a wealth of information suggesting that the pathogenesis of cardiovascular calcifications is significantly more diverse than previously appreciated.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Hiperfosfatemia , Calcificación Vascular , Humanos , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/metabolismo , Músculo Liso Vascular/patología , Hiperfosfatemia/metabolismo , Hiperfosfatemia/patología , Células Cultivadas , Fosfatos , Calcificación Vascular/metabolismo
4.
Biofabrication ; 15(2)2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36626826

RESUMEN

While current clinical utilization of large vascular grafts for vascular transplantation is encouraging, tissue engineering of small grafts still faces numerous challenges. This study aims to investigate the feasibility of constructing a small vascular graft from decellularized amniotic membranes (DAMs). DAMs were rolled around a catheter and each of the resulting grafts was crosslinked with (a) 0.1% glutaraldehyde; (b) 1-ethyl-3-(3-dimethylaminopropyl) crbodiimidehydro-chloride (20 mM)-N-hydroxy-succinimide (10 mM); (c) 0.5% genipin; and (d) no-crosslinking, respectively. Our results demonstrated the feasibility of using a rolling technique followed by lyophilization to transform DAM into a vessel-like structure. The genipin-crosslinked DAM graft showed an improved integrated structure, prolonged stability, proper mechanical property, and superior biocompatibility. After transplantation in rat abdominal aorta, the genipin-crosslinked DAM graft remained patent up to 16 months, with both endothelial and smooth muscle cell regeneration, which suggests that the genipin-crosslinked DAM graft has great potential to beimplementedas a small tissue engineered graft for futurevasculartransplantation.


Asunto(s)
Amnios , Iridoides , Humanos , Ratas , Animales , Iridoides/química , Prótesis Vascular , Ingeniería de Tejidos/métodos , Modelos Animales
5.
Nucleic Acids Res ; 50(4): 2270-2286, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137168

RESUMEN

Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.


Asunto(s)
Empalme Alternativo , Corazón/embriología , Factores de Empalme de ARN/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Organogénesis , ARN/metabolismo , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
7.
J Cardiovasc Dev Dis ; 7(4)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339213

RESUMEN

Heart valves are dynamic structures that, in the average human, open and close over 100,000 times per day, and 3 × 109 times per lifetime to maintain unidirectional blood flow. Efficient, coordinated movement of the valve structures during the cardiac cycle is mediated by the intricate and sophisticated network of extracellular matrix (ECM) components that provide the necessary biomechanical properties to meet these mechanical demands. Organized in layers that accommodate passive functional movements of the valve leaflets, heart valve ECM is synthesized during embryonic development, and remodeled and maintained by resident cells throughout life. The failure of ECM organization compromises biomechanical function, and may lead to obstruction or leaking, which if left untreated can lead to heart failure. At present, effective treatment for heart valve dysfunction is limited and frequently ends with surgical repair or replacement, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of biomechanical valve failure in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level, namely the interstitial and endothelial lineages. However, less focus has been on the ECM, shown previously in other systems, to be a promising mechanism-inspired therapeutic target. Here, we highlight and review the biology and biomechanical contributions of key components of the heart valve ECM. Furthermore, we discuss how human diseases, including connective tissue disorders lead to aberrations in the abundance, organization and quality of these matrix proteins, resulting in instability of the valve infrastructure and gross functional impairment.

8.
J Control Release ; 328: 834-845, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33157191

RESUMEN

Adeno-associated virus (AAV) is a promising vector for gene therapy, but its broad tropism can be detrimental if the transgene being delivered is harmful when expressed ubiquitously in the body, i.e. in non-target tissues. Delivering the transgene of interest to target cells at levels high enough to be therapeutically effective while maintaining safety by minimizing delivery to off-target cells is a prevalent challenge in the field of gene therapy. We have developed a protease activatable vector (provector) platform based on AAV9 that can be injected systemically to deliver therapeutic transgenes site-specifically to diseased cells by responding to extracellular proteases present at the disease site. The provector platform consists of a peptide insertion into the virus capsid which disrupts the virus' ability to bind to cell surface receptors. This peptide contains a blocking motif (aspartic acid residues) flanked on either side by cleavage sequences that are recognized by certain proteases. Exposure to proteases cleaves the peptides off the capsid, activating or "switching ON" the provector. In response to the activation, the provectors regain their ability to bind and transduce cells. Here, we have designed a provector that is activated by cysteine aspartic proteases (caspases), which have roles in inflammation and apoptosis and thus are elevated at sites of diseases such as heart failure, neurodegenerative diseases, and ischemic stroke. This provector demonstrates a 200-fold reduction in transduction ability in the OFF state compared to AAV9, reducing the virus' ability to transduce off-target healthy tissue. Following exposure to and proteolysis by caspase-3, the provector shows a 95-fold increase in transduction compared to the OFF state. The switchable transduction behavior was found to be a direct result of the peptide insertion ablating the ability of the virus to bind to cells. In vivo studies were conducted to characterize the biodistribution, blood circulation time, neutralizing antibody formation, and targeted delivery ability of the caspase-activatable provector in a model of heart failure.


Asunto(s)
Dependovirus , Vectores Genéticos , Caspasas , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Distribución Tisular , Transducción Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA