Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet A ; : e63862, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39233552

RESUMEN

MNS1 (meiosis-specific nuclear structural protein-1 gene) encodes a structural protein implicated in motile ciliary function and sperm flagella assembly. To date, two different homozygous MNS1 variants have been associated with autosomal recessive visceral heterotaxy (MIM#618948). A French individual was identified with compound heterozygous variants in the MNS1 gene. A collaborative call was proposed via GeneMatcher to describe new cases with this rare syndrome, leading to the identification of another family. The first patient was a female presenting complete situs inversus and unusual symptoms, including severe myopia and dental agenesis of 10 permanent teeth. She was found to carry compound heterozygous frameshift and nonsense variants in MNS1. The second and third patients were sibling fetuses with homozygous in-frame deletion variants in MNS1 and homozygous missense variants in GLDN. Autopsies revealed a complex prenatal malformation syndrome. We add here new cases with the ultra-rare MNS1-related disorder and provide a review of all published individuals.

2.
Prenat Diagn ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138116

RESUMEN

OBJECTIVE: Prenatal exome sequencing (pES) is now commonly used in clinical practice. It can be used to identifiy an additional diagnosis in around 30% of fetuses with structural defects and normal chromosomal microarray analysis (CMA). However, interpretation remains challenging due to the limited prenatal data for genetic disorders. METHOD: We conducted an ancillary study including fetuses with pathogenic/likely pathogenic variants identified by trio-pES from the "AnDDI-Prenatome" study. The prenatal phenotype of each patient was categorized as typical, uncommon, or unreported based on the comparison of the prenatal findings with documented findings in the literature and public phenotype-genotype databases (ClinVar, HGMD, OMIM, and Decipher). RESULTS: Prenatal phenotypes were typical for 38/56 fetuses (67.9%). For the others, genotype-phenotype associations were challenging due to uncommon prenatal features (absence of recurrent hallmark, rare, or unreported). We report the first prenatal features associated with LINS1 and PGM1 variants. In addition, a double diagnosis was identified in three fetuses. CONCLUSION: Standardizing the description of prenatal features, implementing longitudinal prenatal follow-up, and large-scale collection of prenatal features are essential steps to improving pES data interpretation.

3.
Clin Genet ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169672

RESUMEN

SCY1-like protein 2 (SCYL2) is a member of the SCY1-like pseudokinase family which regulates secretory protein trafficking. It plays a crucial role in the nervous system by suppressing excitotoxicity in the developing brain. Scyl2 knockout mice have excess prenatal mortality and survivors show severe neurological dysfunction. Bi-allelic loss-of-function (LOF) variants in SCYL2 were recently associated with arthrogryposis multiplex congenita-4 (AMC4) following the report of 6 individuals from two consanguineous unrelated families. The AMC4 phenotype described included severe arthrogryposis, corpus callosum agenesis, epilepsy and frequently, early death. We describe here two additional similarly affected individuals with AMC4, including one diagnosed in the prenatal period, with bi-allelic LOF variants in SCYL2, and two individuals homozygous for missense variants in the protein kinase domain of SCYL2 and presenting with developmental delay only. Our study confirms the association of SCYL2 with AMC4 and suggests a milder phenotype can occur, extending the phenotypic spectrum of autosomal recessive SCYL2-related disorders.

4.
Cerebellum ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073549

RESUMEN

Biallelic WARS2 pathogenic variants responsible for partial defect in aminoacylation, have recently been reported in subjects presenting with late-onset phenotypes combining dopa-responsive early-onset dystonia parkinsonism with altered DaTSCAN and progressive myoclonus ataxia. Here, we present the case of a 39-year-old male with childhood-onset progressive dopa-responsive dystonia parkinsonism, prominent psychiatric features and ataxia whose genome sequencing identified a p.(Arg36Ter) nonsense variant and a hypomorphic p.(Trp13Gly) missense variant, allowing the diagnosis of WARS2-related disease. The p.(Trp13Gly) missense variant has previously been reported in individuals with less severe phenotypes than those carrying biallelic WARS2 loss-of-function variants. Among these individuals, two subjects had similar genetic backgrounds and almost identical clinical history to our patient. Our report brings additional proof that the p.(Trp13Gly) variant acts as a hypomorphic allele, offering insight on a genotype-phenotype correlation in WARS2-related disorders.

6.
J Neurol ; 271(9): 6343-6348, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39003427

RESUMEN

Spastic paraplegia type 3A (SPG3A) is the second most common form of hereditary spastic paraplegia (HSP). This autosomal-dominant-inherited motor disorder is caused by heterozygous variants in the ATL1 gene which usually presents as a pure childhood-onset spastic paraplegia. Affected individuals present muscle weakness and spasticity in the lower limbs, with symptom onset in the first decade of life. Individuals with SPG3A typically present a slow progression and remain ambulatory throughout their life. Here we report three unrelated individuals presenting with very-early-onset (before 7 months) complex, and severe HSP phenotypes (axial hypotonia, spastic quadriplegia, dystonia, seizures and intellectual disability). For 2 of the 3 patients, these phenotypes led to the initial diagnosis of cerebral palsy (CP). These individuals carried novel ATL1 pathogenic variants (a de novo ATL1 missense p.(Lys406Glu), a homozygous frameshift p.(Arg403Glufs*3) and a homozygous missense variant (p.Tyr367His)). The parents carrying the heterozygous frameshift and missense variants were asymptomatic. Through these observations, we increase the knowledge on genotype-phenotype correlations in SPG3A and offer additional proof for possible autosomal recessive forms of SPG3A, while raising awareness on these exceptional phenotypes. Their ability to mimic CP also implies that genetic testing should be considered for patients with atypical forms of CP, given the implications for genetic counseling.


Asunto(s)
Proteínas de Unión al GTP , Proteínas de la Membrana , Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/fisiopatología , Paraplejía Espástica Hereditaria/diagnóstico , Masculino , Femenino , Proteínas de la Membrana/genética , Proteínas de Unión al GTP/genética , Estudios de Asociación Genética , Fenotipo , Niño , Lactante , Adolescente , Adulto , Preescolar
7.
J Med Genet ; 61(9): 824-832, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-38849204

RESUMEN

INTRODUCTION: Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described. METHOD: After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases. RESULTS: We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM, outside of the two previously known mutational hotspots. CONCLUSION: Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Masculino , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Feto/patología , Mutación , Fenotipo , Diagnóstico Prenatal , Secuenciación del Exoma , Estudios de Asociación Genética/métodos , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/diagnóstico , Linaje , Embarazo
8.
Prenat Diagn ; 44(9): 1115-1118, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38923535

RESUMEN

BACKGROUND: Exome sequencing in prenatal context confronts with pathogenic variants associated with phenotypes that are not detectable prenatally. MATERIALS AND METHODS: A consanguineous couple was referred at 24 weeks of gestation for prenatal genetic investigations after ultrasonography findings including decreased fetal movements, hypoplastic male external genitalia, retrognathia, prefrontal edema, anomalies of the great vessels with pulmonary atresia and dilated tortuous aorta. RESULT: Prenatal trio exome sequencing identified two homozygous likely pathogenic variants, i.e. a missense in EFEMP2 involved in cutis laxa and a nonsense in RAG1 involved in several types of severe combined immunodeficiency. DISCUSSION: The fetal ultrasonographic phenotype was partially compatible with previously reported prenatal presentations secondary to EFEMP2 biallelic variants, but prenatal presentations have never been reported for RAG1 related disorders because the RAG1 phenotype is undetectable during pregnancy. CONCLUSION: Both EFEMP2 and RAG1 variants were disclosed to the couple because the EFEMP2 variant was considered causative for the fetal ultrasonographic phenotype and the RAG1 variant was considered a finding of strong interest for genetic counselling and monitoring of future pregnancies following the American College of Medical Genetics and Genomics recommendations about the discovery of incidental findings in fetal exome sequencing in prenatal diagnosis.


Asunto(s)
Secuenciación del Exoma , Proteínas de Homeodominio , Adulto , Femenino , Humanos , Masculino , Embarazo , Secuenciación del Exoma/métodos , Proteínas de Homeodominio/genética , Mutación Missense , Fenotipo , Diagnóstico Prenatal/métodos , Ultrasonografía Prenatal
9.
Eur J Hum Genet ; 32(9): 1166-1183, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38802530

RESUMEN

Generation and subsequently accessibility of secondary findings (SF) in diagnostic practice is a subject of debate around the world and particularly in Europe. The French FIND study has been set up to assess patient/parent expectations regarding SF from exome sequencing (ES) and to collect their real-life experience until 1 year after the delivery of results. 340 patients who had ES for undiagnosed developmental disorders were included in this multicenter mixed study (quantitative N = 340; qualitative N = 26). Three groups of actionable SF were rendered: predisposition to late-onset actionable diseases; genetic counseling; pharmacogenomics. Participants expressed strong interest in obtaining SF and a high satisfaction level when a SF is reported. The medical actionability of the SF reinforced parents' sense of taking action for their child and was seen as an opportunity. While we observed no serious psychological concerns, we showed that these results could have psychological consequences, in particular for late-onset actionable diseases SF, within families already dealing with rare diseases. This study shows that participants remain in favor of accessing SF despite the potential psychological, care, and lifestyle impacts, which are difficult to anticipate. The establishment of a management protocol, including the support of a multidisciplinary team, would be necessary if national policy allows the reporting of these data.


Asunto(s)
Asesoramiento Genético , Humanos , Femenino , Masculino , Adulto , Asesoramiento Genético/psicología , Secuenciación del Exoma , Francia , Padres/psicología , Niño , Pruebas Genéticas , Hallazgos Incidentales , Adolescente , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/psicología , Discapacidades del Desarrollo/diagnóstico , Preescolar
10.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38787418

RESUMEN

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Niño
12.
Am J Med Genet B Neuropsychiatr Genet ; 195(6): e32970, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38459409

RESUMEN

Since 2008, FOXG1 haploinsufficiency has been linked to a severe neurodevelopmental phenotype resembling Rett syndrome but with earlier onset. Most patients are unable to sit, walk, or speak. For years, FOXG1 sequencing was only prescribed in such severe cases, limiting insight into the full clinical spectrum associated with this gene. Next-generation sequencing (NGS) now enables unbiased diagnostics. Through the European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders, we gathered data from patients with heterozygous FOXG1 variants presenting a mild phenotype, defined as able to speak and walk independently. We also reviewed data from three previously reported patients meeting our criteria. We identified five new patients with pathogenic FOXG1 missense variants, primarily in the forkhead domain, showing varying nonspecific intellectual disability and developmental delay. These features are not typical of congenital Rett syndrome and were rarely associated with microcephaly and epilepsy. Our findings are consistent with a previous genotype-phenotype analysis by Mitter et al. suggesting the delineation of five different FOXG1 genotype groups. Milder phenotypes were associated with missense variants in the forkhead domain. This information may facilitate prognostic assessments in children carrying a FOXG1 variant and improve the interpretation of new variants identified with genomic sequencing.


Asunto(s)
Factores de Transcripción Forkhead , Discapacidad Intelectual , Proteínas del Tejido Nervioso , Fenotipo , Síndrome de Rett , Humanos , Factores de Transcripción Forkhead/genética , Síndrome de Rett/genética , Proteínas del Tejido Nervioso/genética , Femenino , Masculino , Niño , Preescolar , Discapacidad Intelectual/genética , Desarrollo del Lenguaje , Estudios de Asociación Genética/métodos , Mutación Missense/genética , Discapacidades del Desarrollo/genética , Lactante , Adolescente , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Haploinsuficiencia/genética
13.
J Thromb Haemost ; 22(6): 1616-1626, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484912

RESUMEN

BACKGROUND: No F8 genetic abnormality is detected in approximately 1% to 2% of patients with severe hemophilia A (HA) using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVES: The study aimed to identify the causal variation in families with a history of severe HA for whom genetic investigations failed. METHODS: We performed whole F8 gene sequencing in 8 propositi. Genomic rearrangements were confirmed by Sanger sequencing of breakpoint junctions and/or quantitative polymerase chain reaction. RESULTS: A structural variant disrupting F8 was found in each propositus, so that all the 815 families with a history of severe HA registered in our laboratory received a conclusive genetic diagnosis. These structural variants consisted of 3 balanced inversions, 3 large insertions of gained regions, and 1 retrotransposition of a mobile element. The 3 inversions were 105 Mb, 1.97 Mb, and 0.362 Mb in size. Among the insertions of gained regions, one corresponded to the insertion of a 34 kb gained region from chromosome 6q27 in F8 intron 6, another was the insertion of a 447 kb duplicated region from chromosome 9p22.1 in F8 intron 14, and the last one was the insertion of an Xq28 349 kb gained in F8 intron 5. CONCLUSION: All the genetically unsolved cases of severe HA in this cohort were due to structural variants disrupting F8. This study highlights the effectiveness of whole F8 sequencing to improve the molecular diagnosis of HA when the conventional approach fails.


Asunto(s)
Inversión Cromosómica , Factor VIII , Hemofilia A , Intrones , Fenotipo , Humanos , Hemofilia A/genética , Hemofilia A/diagnóstico , Factor VIII/genética , Masculino , Predisposición Genética a la Enfermedad , Índice de Severidad de la Enfermedad , Linaje , Cromosomas Humanos Par 6/genética , Análisis Mutacional de ADN , Cromosomas Humanos Par 9/genética , Análisis de Secuencia de ADN , Mutación , Femenino
14.
Prenat Diagn ; 44(3): 352-356, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38342957

RESUMEN

A consanguineous couple was referred at 10 weeks of gestation (WG) for prenatal genetic investigations due to isolated cystic hygroma. Prenatal trio exome sequencing identified causative homozygous truncating variants in ASCC1 previously implicated in spinal muscular atrophy with congenital bone fractures. Prenatal manifestations in ASCC1 can usually include hydramnios, fetal hypo-/akinesia, arthrogryposis, contractures and limb deformities, hydrops fetalis and cystic hygroma. An additional truncating variant was identified in CSPP1 associated with Joubert syndrome. Presentations in CSPP1 include cerebellar and brainstem malformations with vermis hypoplasia and molar tooth sign, difficult to visualize in early gestation. A second pregnancy was marked by the recurrence of isolated increased nuchal translucency at 10 + 2 WG. Sanger prenatal diagnosis targeted on ASCC1 and CSPP1 variants showed the presence of the homozygous familial ASCC1 variant. In this case, prenatal exome sequencing analysis is subject to a partial ASCC1 phenotype and an undetectable CSPP1 phenotype at 10 weeks of gestation. As CSPP1 contribution is unclear or speculative to a potentially later in pregnancy or postnatal phenotype, it is mentioned as a variant of uncertain significance. The detection of pathogenic or likely pathogenic variants involved in severe disorders but without phenotype-genotype correlation because the pregnancy is in the early stages or due to prenatally undetectable phenotypes, will encourage the clinical community to define future practices in molecular prenatal reporting.


Asunto(s)
Linfangioma Quístico , Embarazo , Femenino , Humanos , Linfangioma Quístico/diagnóstico por imagen , Linfangioma Quístico/genética , Diagnóstico Dual (Psiquiatría) , Diagnóstico Prenatal , Feto/diagnóstico por imagen , Fenotipo , Proteínas Portadoras/genética
15.
Eur J Phys Rehabil Med ; 60(2): 257-269, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38300152

RESUMEN

INTRODUCTION: Neuromuscular diseases (NMDs) include a large group of heterogeneous diseases. NMDs frequently involve gait disorders, which affect quality of life. Several walking tests and tools have been described in the literature, but there is no consensus regarding the use of walking tests and tools in NMDs or of their measurement properties for walking outcomes. The aim of this review is to present an overview of walking tests, including their measurement properties when used in adults with inherited or genetic NMDs. The aim is to help clinicians and researchers choose the most appropriate test for their objective. EVIDENCE ACQUISITION: A systematic review was conducted after consulting MEDLINE (via PubMed), EMBASE, Science direct, Google Scholar and Cochrane Central Register of Controlled Trials databases for published studies in which walking outcome measurement properties were assessed. The validity, reliability, measurement error and responsiveness properties were evaluated in terms of statistical methods and methodological design qualities using the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. EVIDENCE SYNTHESIS: We included 46 studies in NMDs. These studies included 15 different walking tests and a wide variety of walking outcomes, assessed with six types of walking tools. Overall, the 6MWT was the most studied test in terms of measurement properties. The methodological design and statistical methods of most studies evaluating construct validity, reliability and measurement error were "very good." The majority of outcome measurements were valid and reliable. However, studies on responsiveness as minimal important difference or minimal important change were lacking or were found to have inadequate methodological and statistical methods according to the COSMIN guidelines. CONCLUSIONS: Most walking outcomes were found to be valid and reliable in NMDs. However, in view of the growing number of clinical trials, further studies are needed to clarify additional measurement properties.


Asunto(s)
Enfermedades Neuromusculares , Calidad de Vida , Adulto , Humanos , Reproducibilidad de los Resultados , Caminata , Marcha , Psicometría
16.
Clin Genet ; 105(5): 581-583, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38379111

RESUMEN

A case of mosaic MTOR-associated hemimegalencephaly and hypomelanosis of Ito, died at 33 probably because of sudden unexpected death in epilepsy. Assessment of the variant allele fraction (VAF) in different tissues postmortem showed high variability not correlated with clinical features, representing the most detailed assessment of VAFs in different tissues to date.


Asunto(s)
Hipopigmentación , Humanos , Hipopigmentación/genética , Alelos , Autopsia , Serina-Treonina Quinasas TOR
17.
Clin Genet ; 105(5): 555-560, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38287449

RESUMEN

Achaete-Scute Family basic-helix-loop-helix (bHLH) Transcription Factor 1 (ASCL1) is a proneural transcription factor involved in neuron development in the central and peripheral nervous system. While initially suspected to contribute to congenital central hypoventilation syndrome-1 (CCHS) with or without Hirschsprung disease (HSCR) in three individuals, its implication was ruled out by the presence, in one of the individuals, of a Paired-like homeobox 2B (PHOX2B) heterozygous polyalanine expansion variant, known to cause CCHS. We report two additional unrelated individuals sharing the same sporadic ASCL1 p.(Glu127Lys) missense variant in the bHLH domain and a common phenotype with short-segment HSCR, signs of dysautonomia, and developmental delay. One has also mild CCHS without polyalanine expansion in PHOX2B, compatible with the diagnosis of Haddad syndrome. Furthermore, missense variants with homologous position in the same bHLH domain in other genes are known to cause human diseases. The description of additional individuals carrying the same variant and similar phenotype, as well as targeted functional studies, would be interesting to further evaluate the role of ASCL1 in neurocristopathies.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Homeodominio/genética , Mutación , Mutación Missense/genética , Fenotipo , Factores de Transcripción/genética
18.
Brain ; 147(1): 311-324, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37713627

RESUMEN

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Asunto(s)
Distonía , Epilepsia , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Animales , Humanos , Microcefalia/genética , Discapacidad Intelectual/genética , Proteínas de Transporte Vesicular/genética , Trastornos del Neurodesarrollo/genética , Epilepsia/genética
19.
Genet Med ; 26(4): 101059, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38158857

RESUMEN

PURPOSE: Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS: Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS: In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION: We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.


Asunto(s)
Empalme Alternativo , Síndromes Orofaciodigitales , Masculino , Humanos , Empalme Alternativo/genética , Síndromes Orofaciodigitales/genética , Empalme del ARN , Intrones , Empalmosomas/genética , Ribonucleoproteínas/genética
20.
HGG Adv ; 4(4): 100238, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37710961

RESUMEN

MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.Thr58Met, has been reported, and additional patients and pathophysiological analysis are required to establish the disease entity. Herein, we report two unrelated megalencephalic patients with polydactyly harboring MYCN variants of p.Pro60Leu and Thr58Met, along with the analysis of gain-of-function and loss-of-function Mycn mouse models. Functional analyses for MYCN-Pro60Leu and MYCN-Thr58Met revealed decreased phosphorylation at Thr58, which reduced protein degradation mediated by FBXW7 ubiquitin ligase. The gain-of-function mouse model recapitulated the human phenotypes of megalencephaly and polydactyly, while brain analyses revealed excess proliferation of intermediate neural precursors during neurogenesis, which we determined to be the pathomechanism underlying megalencephaly. Interestingly, the kidney and female reproductive tract exhibited overt morphological anomalies, possibly as a result of excess proliferation during organogenesis. In conclusion, we confirm an MYCN gain-of-function-induced megalencephaly-polydactyly syndrome, which shows a mirror phenotype of Feingold syndrome, and reveal that MYCN plays a crucial proliferative role, not only in the context of tumorigenesis, but also organogenesis.


Asunto(s)
Párpados/anomalías , Discapacidad Intelectual , Deformidades Congénitas de las Extremidades , Megalencefalia , Microcefalia , Polidactilia , Fístula Traqueoesofágica , Ratones , Animales , Humanos , Femenino , Microcefalia/genética , Mutación con Ganancia de Función , Proteína Proto-Oncogénica N-Myc/genética , Polidactilia/genética , Fenotipo , Megalencefalia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA