Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Cells ; 10(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34831163

RESUMEN

The accumulation of amyloid ß-protein (Aß) is one of the major pathological hallmarks of Alzheimer's disease. Insulin-degrading enzyme (IDE), a zinc-metalloprotease, is a key enzyme involved in Aß degradation, which, in addition to Aß production, is critical for Aß homeostasis. Here, we demonstrate that saturated medium-chain fatty acids (MCFAs) increase total Aß degradation whereas longer saturated fatty acids result in an inhibition of its degradation, an effect which could not be detected in IDE knock-down cells. Further analysis of the underlying molecular mechanism revealed that MCFAs result in an increased exosomal IDE secretion, leading to an elevated extracellular and a decreased intracellular IDE level whereas gene expression of IDE was unaffected in dependence of the chain length. Additionally, MCFAs directly elevated the enzyme activity of recombinant IDE, while longer-chain length fatty acids resulted in an inhibited IDE activity. The effect of MCFAs on IDE activity could be confirmed in mice fed with a MCFA-enriched diet, revealing an increased IDE activity in serum. Our data underline that not only polyunsaturated fatty acids such as docosahexaenoic acid (DHA), but also short-chain fatty acids, highly enriched, for example in coconut oil, might be beneficial in preventing or treating Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Ácidos Grasos/metabolismo , Insulisina/metabolismo , Proteolisis , Animales , Biocatálisis , Línea Celular , Ratones Endogámicos C57BL , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA