Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Dev Dyn ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494595

RESUMEN

BACKGROUND: During the land-to-sea transition of cetaceans (whales, dolphins, and porpoises), the hindlimbs were lost and replaced by an elaborate tail fluke that evolved 32 Ma. All modern cetaceans utilize flukes for lift-based propulsion, and nothing is known of this organ's molecular origins during embryonic development. This study utilizes immunohistochemistry to identify the spatiotemporal location of protein signals known to drive appendage outgrowth in other vertebrates (e.g., Sonic Hedgehog [SHH], GREMLIN [GREM], wingless-type family member 7a [WNT], and fibroblast growth factors [FGFs]) and to test the hypothesis that signals associated with outgrowth and patterning of the tail fluke are similar to a tetrapod limb. Specifically, this study utilizes an embryo of a beluga whale (Delphinapterus leucas) as a case study. RESULTS: Results showed epidermal signals of WNT and FGFs, and mesenchymal/epidermal signals of SHH and GREM. These patterns are most consistent with vertebrate limb development. Overall, these data are most consistent with the hypothesis that outgrowth of tail flukes in cetaceans employs a signaling pattern that suggests genes essential for limb outgrowth and patterning shape this evolutionarily novel appendage. CONCLUSIONS: While these data add insights into the molecular signals potentially driving the evolution and development of tail flukes in cetaceans, further exploration of the molecular drivers of fluke development is required.

2.
Nature ; 620(7975): 734-735, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532853
3.
Dis Aquat Organ ; 151: 29-35, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36106714

RESUMEN

Cook Inlet beluga whales (CIBs) Delphinapterus leucas are Critically Endangered and genetically distinct from other beluga populations in Alaska. CIBs are exposed to numerous natural and anthropogenic sources of mortality and morbidity. This study describes congenital defects observed in 2 CIB calves. The first case, an aborted fetus, was characterized by lack of a peduncle and flukes, anorectal and genitourinary dysgenesis, and probable biliary dysplasia. The second case, a male calf, had a perineal groove defect and suspected secondary peritonitis; it also had a systemic herpesvirus infection. Further studies are needed to determine if such defects are due to genetic mutation, infectious diseases, nutritional imbalances, or contaminant exposure.


Asunto(s)
Ballena Beluga , Infecciones por Herpesviridae , Alaska , Animales , Bahías , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/veterinaria , Masculino
4.
Anat Rec (Hoboken) ; 305(3): 643-667, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34117725

RESUMEN

In a species of baleen whale, we identify olfactory epithelium that suggests a functional sense of smell and document the ontogeny of the surrounding olfactory anatomy. Whales must surface to breathe, thereby providing an opportunity to detect airborne odorants. Although many toothed whales (odontocetes) lack olfactory anatomy, baleen whales (mysticetes) have retained theirs. Here, we investigate fetal and postnatal specimens of bowhead whales (Balaena mysticetus). Computed tomography (CT) reveals the presence of nasal passages and nasal chambers with simple ethmoturbinates through ontogeny. Additionally, we describe the dorsal nasal meatuses and olfactory bulb chambers. The cribriform plate has foramina that communicate with the nasal chambers. We show this anatomy within the context of the whole prenatal and postnatal skull. We document the tunnel for the ethmoidal nerve (ethmoid foramen) and the rostrolateral recess of the nasal chamber, which appears postnatally. Bilateral symmetry was apparent in the postnatal nasal chambers. No such symmetry was found prenatally, possibly due to tissue deformation. No nasal air sacs were found in fetal development. Olfactory epithelium, identified histologically, covers at least part of the ethmoturbinates. We identify olfactory epithelium using six explicit criteria of mammalian olfactory epithelium. Immunohistochemistry revealed the presence of olfactory marker protein (OMP), which is only found in mature olfactory sensory neurons. Although it seems that these neurons are scarce in bowhead whales compared to typical terrestrial mammals, our results suggest that bowhead whales have a functional sense of smell, which they may use to find prey.


Asunto(s)
Ballena de Groenlandia , Animales , Hueso Etmoides , Cavidad Nasal/diagnóstico por imagen , Mucosa Olfatoria , Cráneo
5.
PLoS One ; 16(9): e0257803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34582492

RESUMEN

Most authors have identified two rapid increases in relative brain size (encephalization quotient, EQ) in cetacean evolution: first at the origin of the modern suborders (odontocetes and mysticetes) around the Eocene-Oligocene transition, and a second at the origin of the delphinoid odontocetes during the middle Miocene. We explore how methods used to estimate brain and body mass alter this perceived timing and rate of cetacean EQ evolution. We provide new data on modern mammals (mysticetes, odontocetes, and terrestrial artiodactyls) and show that brain mass and endocranial volume scale allometrically, and that endocranial volume is not a direct proxy for brain mass. We demonstrate that inconsistencies in the methods used to estimate body size across the Eocene-Oligocene boundary have caused a spurious pattern in earlier relative brain size studies. Instead, we employ a single method, using occipital condyle width as a skeletal proxy for body mass using a new dataset of extant cetaceans, to clarify this pattern. We suggest that cetacean relative brain size is most accurately portrayed using EQs based on the scaling coefficients as observed in the closely related terrestrial artiodactyls. Finally, we include additional data for an Eocene whale, raising the sample size of Eocene archaeocetes to seven. Our analysis of fossil cetacean EQ is different from previous works which had shown that a sudden increase in EQ coincided with the origin of odontocetes at the Eocene-Oligocene boundary. Instead, our data show that brain size increased at the origin of basilosaurids, 5 million years before the Eocene-Oligocene transition, and we do not observe a significant increase in relative brain size at the origin of odontocetes.


Asunto(s)
Cetáceos/anatomía & histología , Fósiles/anatomía & histología , Cráneo/anatomía & histología , Animales , Evolución Biológica , Tamaño Corporal , Encéfalo/anatomía & histología , Filogenia
6.
Anat Rec (Hoboken) ; 303(12): 3035-3043, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31854140

RESUMEN

The external acoustic meatus (EAM) of most baleen whales accumulates cellular debris annually in the lumen as whales age, forming a lamellated ear plug. The bowhead whale ear plug is formed from annually molting lining of the EAM as the entire epithelium releases at the level of the stratum basale during the spring migration. Epithelial regeneration is mostly completed by the fall migration, remaining intact for 6-7 months before being torn off the following spring. Desmosomes are integral to cell-cell adhesion with connecting desmosomal cadherins desmoglein (dsg) and desmocollin (dsc). Paraffin sections of the oral cavity and EAM lining of spring and fall adult bowhead whales, as well as the EAM of spring-caught juvenile, were immunohistochemically examined for the presence of these cadherins. In all fall specimens, both cadherins occurred in all layers except the superficial keratinous layer of the oral cavity. In spring, three different conditions existed: (a) oral cavity of spring-caught adults had reduced cadherins, with superficial fissuring in its keratinized layer and vacuolation in the upper stratum spinosum; (b) EAM of juvenile spring-caught whales displayed fissuring with accompanying reduction of both cadherins in its superficial lining; and (c) EAM lining of spring-caught adults displayed deep fissures, reduced cadherins, and absence of dsc1 in the fissuring zone. These results suggest that shedding of skin layers in mammals, whether normal molting, pathological, or the result of injury and wound repair all revolve around desmosome function. The specific role, structure, and location of these two cadherins need to be further addressed.


Asunto(s)
Ballena de Groenlandia/metabolismo , Adhesión Celular/fisiología , Desmosomas/metabolismo , Piel/metabolismo , Animales , Cadherinas/metabolismo , Conducto Auditivo Externo , Queratinas/metabolismo
7.
Proc Biol Sci ; 286(1896): 20182417, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963938

RESUMEN

Studying ontogeny in both extant and extinct species can unravel the mechanisms underlying mammal diversification and specialization. Among mammalian clades, Cetartiodactyla encompass species with a wide range of adaptations, and ontogenetic evidence could clarify longstanding debates on the origins of modern specialized families. Here, we study the evolution of dental eruption patterns in early diverging cetartiodactyls to assess the ecological and biological significance of this character and shed new light on phylogenetic issues. After investigation of the ontogenetic dental series of 63 extinct genera, our parsimony reconstructions of eruption state evolution suggest that the eruption of molars before permanent premolars represents a plesiomorphic condition within Cetartiodactyla. This result substantially differs from a previous study based on modern species only. As a result, the presence of this pattern in most ruminants might represent an ancestral condition contributing to their specialized herbivory, rather than an original adaptation. In contrast, the late eruption of molars in hippopotamoids is more likely related to biological aspects, such as increases in body mass and slower pace of life. Our study mainly shows that eruption sequences reliably characterize higher level cetartiodactyl taxa and could represent a new source of phylogenetic characters, especially to disentangle the origin of hippopotamoids and cetaceans.


Asunto(s)
Artiodáctilos/anatomía & histología , Evolución Biológica , Cetáceos/anatomía & histología , Fósiles/anatomía & histología , Erupción Dental , Animales , Artiodáctilos/fisiología , Cetáceos/fisiología , Filogenia , Especificidad de la Especie
8.
J Anat ; 234(2): 201-215, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30430562

RESUMEN

The external auditory meatus (EAM) in many species of mysticete whales is filled with a waxy ear plug. Though this lamellated structure is often used to age a whale, its formation and development remain undescribed. It is thought that growth layer groups (GLGs) are laid down annually, thereby increasing the size of this structure. Since some mysticete whales are migratory and many undergo molting, we hypothesized that the cyclical production of these GLGs may be related to these processes. The epithelia of both EAM and glove finger (a part of the tympanic membrane protruding into the EAM) of one juvenile and multiple adult bowhead whales from both fall (October: non-molting) and spring (May: molting) seasons were dissected and examined anatomically and histologically. These tissue samples were compared with the adult oral epithelia at the same time periods. These epithelia shared a similar basic broad structure, though there were differences in thickness and presence of intraepithelial structures. All epithelia in the October specimens were rich in both glycogen and lipid. The parakeratinized epithelium of the oral cavity in the juvenile and some May specimens shed via the production of several superficial epithelial fissures. Other adult May specimens exhibited deep epithelial fissures, reminiscent of pressure ulcers, which would cause the detachment of the entire epithelium from the dermis. We propose that sloughed epithelial lining is the source of the GLGs in the ear plug. Correlating a potential molting sequence with these observations explained the presence of epidermal glycogen, deep epidermal fissures and dermal glycolipid, and to some extent calls into question the origin and structure of the ear plug itself. Further morphological characterization of ear plugs in bowheads is needed to better understand cell origin and ear plug formation.


Asunto(s)
Ballena de Groenlandia/anatomía & histología , Oído/anatomía & histología , Muda , Migración Animal , Animales , Femenino , Masculino , Estaciones del Año
9.
Anat Rec (Hoboken) ; 302(5): 745-760, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30332717

RESUMEN

Few studies exist of the bowhead whale brain and virtually nothing is known about its cortical cytoarchitecture or how it compares to other cetaceans. Bowhead whales are one of the least encephalized cetaceans and occupy a basal phylogenetic position among mysticetes. Therefore, the bowhead whale is an important specimen for understanding the evolutionary specializations of cetacean brains. Here, we present an overview of the structure and cytoarchitecture of the bowhead whale cerebral cortex gleaned from Nissl-stained sections and magnetic resonance imaging (MRI) in comparison with other mysticetes and odontocetes. In general, the cytoarchitecture of cetacean cortex is consistent in displaying a thin cortex, a thick, prominent layer I, and absence of a granular layer IV. Cell density, composition, and width of layers III, V, and VI vary among cortical regions, and cetacean cortex is cell-sparse relative to that of terrestrial mammals. Notably, all regions of the bowhead cortex possess high numbers of von Economo neurons and fork neurons, with the highest numbers observed at the apex of gyri. The bowhead whale is also distinctive in having a significantly reduced hippocampus that occupies a space below the corpus callosum within the lateral ventricle. Consistent with other balaenids, bowhead whales possess what appears to be a blunted temporal lobe, which is in contrast to the expansive temporal lobes that characterize most odontocetes. The present report demonstrates that many morphological and cytoarchitectural characteristics are conserved among cetaceans, while other features, such as a reduced temporal lobe, may characterize balaenids among mysticetes. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 302:745-760, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Anatomía Comparada , Evolución Biológica , Ballena de Groenlandia/anatomía & histología , Corteza Cerebral/anatomía & histología , Animales , Corteza Cerebral/citología , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Neuronas , Filogenia
10.
PLoS One ; 13(1): e0190498, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29338011

RESUMEN

Counts of Growth Layer Groups (GLGs) in the dentin of marine mammal teeth are widely used as indicators of age. In most marine mammals, observations document that GLGs are deposited yearly, but in beluga whales, some studies have supported the view that two GLGs are deposited each year. Our understanding of beluga life-history differs substantially depending on assumptions regarding the timing of GLG deposition; therefore, resolving this issue has important considerations for population assessments. In this study, we used incremental lines that represent daily pulses of dentin mineralization to test the hypothesis that GLGs in beluga dentin are deposited on a yearly basis. Our estimate of the number of daily growth lines within one GLG is remarkably close to 365 days within error, supporting the hypothesis that GLGs are deposited annually in beluga. We show that measurement of daily growth increments can be used to validate the time represented by GLGs in beluga. Furthermore, we believe this methodology may have broader applications to age estimation in other taxa.


Asunto(s)
Ballena Beluga , Dentina/crecimiento & desarrollo , Diente/crecimiento & desarrollo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA