Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2314808120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134196

RESUMEN

Infectious virus shedding from individuals infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is used to estimate human-to-human transmission risk. Control of SARS-CoV-2 transmission requires identifying the immune correlates that protect infectious virus shedding. Mucosal immunity prevents infection by SARS-CoV-2, which replicates in the respiratory epithelium and spreads rapidly to other hosts. However, whether mucosal immunity prevents the shedding of the infectious virus in SARS-CoV-2-infected individuals is unknown. We examined the relationship between viral RNA shedding dynamics, duration of infectious virus shedding, and mucosal antibody responses during SARS-CoV-2 infection. Anti-spike secretory IgA antibodies (S-IgA) reduced viral RNA load and infectivity more than anti-spike IgG/IgA antibodies in infected nasopharyngeal samples. Compared with the IgG/IgA response, the anti-spike S-IgA post-infection responses affected the viral RNA shedding dynamics and predicted the duration of infectious virus shedding regardless of the immune history. These findings highlight the importance of anti-spike S-IgA responses in individuals infected with SARS-CoV-2 for preventing infectious virus shedding and SARS-CoV-2 transmission. Developing medical countermeasures to shorten S-IgA response time may help control human-to-human transmission of SARS-CoV-2 infection and prevent future respiratory virus pandemics.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Esparcimiento de Virus , Formación de Anticuerpos , Tiempo de Reacción , Anticuerpos Antivirales , ARN Viral , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina A Secretora
2.
PLoS One ; 18(9): e0291670, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37725623

RESUMEN

The COVID-19 antibody test was developed to investigate the humoral immune response to SARS-CoV-2 infection. In this study, we examined whether S antibody titers measured using the anti-SARS-CoV-2 IgG II Quant assay (S-IgG), a high-throughput test method, reflects the neutralizing capacity acquired after SARS-CoV-2 infection or vaccination. To assess the antibody dynamics and neutralizing potency, we utilized a total of 457 serum samples from 253 individuals: 325 samples from 128 COVID-19 patients including 136 samples from 29 severe/critical cases (Group S), 155 samples from 71 mild/moderate cases (Group M), and 132 samples from 132 health care workers (HCWs) who have received 2 doses of the BNT162b2 vaccinations. The authentic virus neutralization assay, the surrogate virus neutralizing antibody test (sVNT), and the Anti-N SARS-CoV-2 IgG assay (N-IgG) have been performed along with the S-IgG. The S-IgG correlated well with the neutralizing activity detected by the authentic virus neutralization assay (0.8904. of Spearman's rho value, p < 0.0001) and sVNT (0.9206. of Spearman's rho value, p < 0.0001). However, 4 samples (2.3%) of S-IgG and 8 samples (4.5%) of sVNT were inconsistent with negative results for neutralizing activity of the authentic virus neutralization assay. The kinetics of the SARS-CoV-2 neutralizing antibodies and anti-S IgG in severe cases were faster than the mild cases. All the HCWs elicited anti-S IgG titer after the second vaccination. However, the HCWs with history of COVID-19 or positive N-IgG elicited higher anti-S IgG titers than those who did not have it previously. Furthermore, it is difficult to predict the risk of breakthrough infection from anti-S IgG or sVNT antibody titers in HCWs after the second vaccination. Our data shows that the use of anti-S IgG titers as direct quantitative markers of neutralizing capacity is limited. Thus, antibody tests should be carefully interpreted when used as serological markers for diagnosis, treatment, and prophylaxis of COVID-19.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Bloqueadores , Anticuerpos Antivirales , Inmunoglobulina G
3.
Proc Natl Acad Sci U S A ; 120(22): e2300155120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216518

RESUMEN

Obesity has been recognized as one of the most significant risk factors for the deterioration and mortality associated with COVID-19, but the significance of obesity itself differs among ethnicity. Multifactored analysis of our single institute-based retrospective cohort revealed that high visceral adipose tissue (VAT) burden, but not other obesity-associated markers, was related to accelerated inflammatory responses and the mortality of Japanese COVID-19 patients. To elucidate the mechanisms how VAT-dominant obesity induces severe inflammation after severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, we infected two different strains of obese mice, C57BL/6JHamSlc-ob/ob (ob/ob), C57BLKS/J-db/db (db/db), genetically impaired in the leptin ligand and receptor, respectively, and control C57BL/6 mice with mouse-adapted SARS-CoV-2. Here, we revealed that VAT-dominant ob/ob mice were extremely more vulnerable to SARS-CoV-2 due to excessive inflammatory responses when compared to SAT-dominant db/db mice. In fact, SARS-CoV-2 genome and proteins were more abundant in the lungs of ob/ob mice, engulfed in macrophages, resulting in increased cytokine production including interleukin (IL)-6. Both an anti-IL-6 receptor antibody treatment and the prevention of obesity by leptin replenishment improved the survival of SARS-CoV-2-infected ob/ob mice by reducing the viral protein burden and excessive immune responses. Our results have proposed unique insights and clues on how obesity increases the risk of cytokine storm and death in patients with COVID-19. Moreover, earlier administration of antiinflammatory therapeutics including anti-IL-6R antibody to VAT-dominant patients might improve clinical outcome and stratification of the treatment for COVID-19, at least in Japanese patients.


Asunto(s)
COVID-19 , Malus , Ratones , Animales , Leptina/genética , Citocinas , COVID-19/complicaciones , Estudios Retrospectivos , SARS-CoV-2 , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/genética , Interleucina-6 , Ratones Obesos
4.
Antiviral Res ; 213: 105582, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948302

RESUMEN

Chandipura virus (CHPV) is a negative-sense single-stranded RNA virus known to cause fatal encephalitis outbreaks in the Indian subcontinent. The virus displays tropism towards the pediatric population and holds significant public health concerns. Currently, there is no specific, effective therapy for CHPV encephalitis. In this study, we evaluated a novel C.B-17 severe combined immunodeficiency (SCID) mouse model which can be used for pre-clinical antiviral evaluation. Inoculation of CHPV developed a lethal infection in our model. Plaque assay and immunohistochemistry detected increased viral loads and antigens in various organs, including the brain, spinal cord, adrenal glands, and whole blood. We further conducted a proof-of-concept evaluation of favipiravir in the SCID mouse model. Favipiravir treatment improved survival with pre-symptomatic (days 5-14) and post-symptomatic (days 9-18) treatment. Reduced viral loads were observed in whole blood, kidney/adrenal gland, and brain tissue with favipiravir treatment. The findings in this study demonstrate the utility of SCID mouse for in vivo drug efficacy evaluation and the potential efficacy of favipiravir against CHPV infection.


Asunto(s)
Encefalitis , Inmunodeficiencia Combinada Grave , Niño , Humanos , Animales , Ratones , Antivirales/uso terapéutico , Evaluación de Medicamentos , Ratones SCID , Inmunodeficiencia Combinada Grave/tratamiento farmacológico , Vesiculovirus/genética
5.
Sci Rep ; 12(1): 14909, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050347

RESUMEN

COVID-19 antibody testing has been developed to investigate humoral immune response in SARS-CoV-2 infection. To assess the serological dynamics and neutralizing potency following SARS-CoV-2 infection, we investigated the neutralizing (NT) antibody, anti-spike, and anti-nucleocapsid antibodies responses using a total of 168 samples obtained from 68 SARS-CoV-2 infected patients. Antibodies were measured using an authentic virus neutralization assay, the high-throughput laboratory measurements of the Abbott Alinity quantitative anti-spike receptor-binding domain IgG (S-IgG), semiquantitative anti-spike IgM (S-IgM), and anti-nucleocapsid IgG (N-IgG) assays. The quantitative measurement of S-IgG antibodies was well correlated with the neutralizing activity detected by the neutralization assay (r = 0.8943, p < 0.0001). However, the kinetics of the SARS-CoV-2 NT antibody in severe cases were slower than that of anti-S and anti-N specific antibodies. These findings indicate a limitation of using the S-IgG antibody titer, detected by the chemiluminescent immunoassay, as a direct quantitative marker of neutralizing activity capacity. Antibody testing should be carefully interpreted when utilized as a marker for serological responses to facilitate diagnostic, therapeutic, and prophylactic interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Prueba de COVID-19 , Humanos , Inmunoglobulina G , Inmunoglobulina M , Sensibilidad y Especificidad
6.
Vaccine ; 40(41): 5892-5903, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36064667

RESUMEN

To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adyuvantes Inmunológicos , Administración Intranasal , Compuestos de Alumbre , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina A Secretora , Inmunoglobulina G , Pulmón , Ratones , Oligonucleótidos , Glicoproteína de la Espiga del Coronavirus , Vacunación
7.
PLoS One ; 17(9): e0274181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36107911

RESUMEN

Quantitative measurement of SARS-CoV-2 neutralizing antibodies is highly expected to evaluate immune status, vaccine response, and antiviral therapy. The Elecsys® Anti-SARS-CoV-2 S (Elecsys® anti-S) was developed to measure anti-SARS-CoV-2 S proteins. We sought to investigate whether Elecsys® anti-S can be used to predict neutralizing activities in patients' serums using an authentic virus neutralization assay. One hundred forty-six serum samples were obtained from 59 patients with COVID-19 at multiple time points. Of the 59 patients, 44 cases were included in Group M (mild 23, moderate 21) and produced 84 samples (mild 35, moderate 49), while 15 cases were included in Group S (severe 11, critical 4) and produced 62 samples (severe 43, critical 19). The neutralization assay detected 73% positive cases, and Elecsys® anti-S and Elecsys® Anti-SARS-CoV-2 (Elecsys® anti-N) showed 72% and 66% positive cases, respectively. A linear correlation between the Elecsys® anti-S assay and the neutralization assay were highly correlated (r = 0.7253, r2 = 0.5261) than a linear correlation between the Elecsys® anti-N and neutralization assay (r = 0.5824, r2 = 0.3392). The levels of Elecsys® anti-S antibody and neutralizing activities were significantly higher in Group S than in Group M after 6 weeks from onset of symptoms (p < 0.05). Conversely, the levels of Elecsys® anti-N were comparable in both groups. Three immunosuppressed patients, including cancer patients, showed low levels of anti-S and anti-N antibodies and neutralizing activities throughout the measurement period, indicating the need for careful follow-up. Our data indicate that Elecsys® anti-S can predict the neutralization antibodies in COVID-19.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Antivirales , Antivirales , COVID-19/diagnóstico , Humanos , Inmunoensayo , Pruebas de Neutralización , SARS-CoV-2
8.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895716

RESUMEN

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Asunto(s)
COVID-19 , Pulmón , Cadenas Ligeras de Miosina , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tromboinflamación , Vasculitis , COVID-19/sangre , COVID-19/complicaciones , COVID-19/patología , Humanos , Leucocitos Mononucleares , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Cadenas Ligeras de Miosina/sangre , RNA-Seq , SARS-CoV-2/aislamiento & purificación , Análisis de la Célula Individual , Espectrometría por Rayos X , Tromboinflamación/patología , Tromboinflamación/virología , Vasculitis/patología , Vasculitis/virología
9.
Med ; 3(4): 249-261.e4, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35261995

RESUMEN

Background: The immune profile against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by Omicron in individuals with various immune histories. Methods: The neutralization susceptibility of the variants, including Omicron and their ancestors, was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections of Alpha/Delta with multiple time intervals following vaccination. Findings: Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against Omicron was induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions: Immune histories with breakthrough infections can overcome the resistance to infection by Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against Omicron and future variants. Funding: This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Complicaciones Posoperatorias , Vacunación
10.
Emerg Infect Dis ; 28(5): 998-1001, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35290176

RESUMEN

To determine virus shedding duration, we examined clinical samples collected from the upper respiratory tracts of persons infected with severe acute respiratory syndrome coronavirus 2 Omicron variant in Japan during November 29-December 18, 2021. Vaccinees with mild or asymptomatic infection shed infectious virus 6-9 days after onset or diagnosis, even after symptom resolution.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Infecciones Asintomáticas , Humanos , SARS-CoV-2 , Esparcimiento de Virus
11.
Microbiol Spectr ; 10(1): e0061821, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019698

RESUMEN

The host transmembrane protein MARCH8 is a RING finger E3 ubiquitin ligase that downregulates various host transmembrane proteins, such as MHC-II. We have recently reported that MARCH8 expression in virus-producing cells impairs viral infectivity by reducing virion incorporation of not only HIV-1 envelope glycoprotein but also vesicular stomatitis virus G-glycoprotein through two different pathways. However, the MARCH8 inhibition spectrum remains largely unknown. Here, we show the antiviral spectrum of MARCH8 using viruses pseudotyped with a variety of viral envelope glycoproteins. Infection experiments revealed that viral envelope glycoproteins derived from the rhabdovirus, arenavirus, coronavirus, and togavirus (alphavirus) families were sensitive to MARCH8-mediated inhibition. Lysine mutations at the cytoplasmic tails of rabies virus-G, lymphocytic choriomeningitis virus glycoproteins, SARS-CoV and SARS-CoV-2 spike proteins, and Chikungunya virus and Ross River virus E2 proteins conferred resistance to MARCH8. Immunofluorescence showed impaired downregulation of the mutants of these viral envelope glycoproteins by MARCH8, followed by lysosomal degradation, suggesting that MARCH8-mediated ubiquitination leads to intracellular degradation of these envelopes. Indeed, rabies virus-G and Chikungunya virus E2 proteins proved to be clearly ubiquitinated. We conclude that MARCH8 has inhibitory activity on a variety of viral envelope glycoproteins whose cytoplasmic lysine residues are targeted by this antiviral factor. IMPORTANCE A member of the MARCH E3 ubiquitin ligase family, MARCH8, downregulates many different kinds of host transmembrane proteins, resulting in the regulation of cellular homeostasis. On the other hands, MARCH8 acts as an antiviral factor when it binds to and downregulates HIV-1 envelope glycoprotein and vesicular stomatitis virus G-glycoprotein that are viral transmembrane proteins. This study reveals that, as in the case of cellular membrane proteins, MARCH8 shows broad-spectrum inhibition against various viral envelope glycoproteins by recognizing their cytoplasmic lysine residues, resulting in lysosomal degradation.


Asunto(s)
Antivirales/farmacología , Lisina/efectos de los fármacos , Ubiquitina-Proteína Ligasas/farmacología , Proteínas del Envoltorio Viral/química , Western Blotting , Regulación hacia Abajo , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Lisina/metabolismo , Ubiquitinación/fisiología , Proteínas del Envoltorio Viral/efectos de los fármacos
13.
J Vet Med Sci ; 83(11): 1735-1739, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34556606

RESUMEN

There has been no report on Chronic wasting disease (CWD) cases in Japan to date; however, there is concern about the geographic spread of CWD. To clarify the CWD status in Japan, we conducted CWD monitoring using real-time quaking-induced conversion (RT-QuIC) assay which can detect the low level of CWD prions. A total of 690 obex samples collected from sika deer and Reeves's muntjac in Hokkaido and Honshu was tested for CWD prions. No CWD-positive cases were found, suggesting that CWD is nonexistent in Japan. Our results also indicate that RT-QuIC assay is useful for continuous monitoring of CWD. Furthermore, nucleotide sequence analysis of the PrP gene revealed sika deer in Japan harbor CWD susceptible allele.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Bioensayo/veterinaria , Japón/epidemiología , Priones/genética , Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/epidemiología
14.
Immunity ; 54(8): 1841-1852.e4, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246326

RESUMEN

Antibody titers against SARS-CoV-2 slowly wane over time. Here, we examined how time affects antibody potency. To assess the impact of antibody maturation on durable neutralizing activity against original SARS-CoV-2 and emerging variants of concern (VOCs), we analyzed receptor binding domain (RBD)-specific IgG antibodies in convalescent plasma taken 1-10 months after SARS-CoV-2 infection. Longitudinal evaluation of total RBD IgG and neutralizing antibody revealed declining total antibody titers but improved neutralization potency per antibody to original SARS-CoV-2, indicative of antibody response maturation. Neutralization assays with authentic viruses revealed that early antibodies capable of neutralizing original SARS-CoV-2 had limited reactivity toward B.1.351 (501Y.V2) and P.1 (501Y.V3) variants. Antibodies from late convalescents exhibited increased neutralization potency to VOCs, suggesting persistence of cross-neutralizing antibodies in plasma. Thus, maturation of the antibody response to SARS-CoV-2 potentiates cross-neutralizing ability to circulating variants, suggesting that declining antibody titers may not be indicative of declining protection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , COVID-19/epidemiología , Humanos , Inmunoglobulina G , Pruebas de Neutralización , SARS-CoV-2/genética , Carga Viral
15.
Brain Pathol ; 31(5): e12941, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33624334

RESUMEN

Alzheimer's disease (AD) is the main cause of dementia, and ß-amyloid (Aß) is a central factor in the initiation and progression of the disease. Different forms of Aß have been identified as monomers, oligomers, and amyloid fibrils. Many proteins have been implicated as putative receptors of respective forms of Aß. Distinct forms of Aß oligomers are considered to be neurotoxic species that trigger the pathophysiology of AD. It was reported that cellular prion protein (PrPC ) is one of the most selective and high-affinity binding partners of Aß oligomers. The interaction of Aß oligomers with PrPC is important to synaptic dysfunction and loss. The binding of Aß oligomers to PrPC has mostly been studied with synthetic peptides, cell culture, and murine models of AD by biochemical and biological methods. However, the molecular mechanisms underlying the relationship between Aß oligomers and PrPC remain unclear, especially in the human brain. We immunohistochemically investigated the relationship between Aß oligomers and PrPC in human brain tissue with and without amyloid pathology. We histologically demonstrate that PrPC accumulates with aging in human brain tissue even prior to AD mainly within diffuse-type amyloid plaques, which are composed of more soluble Aß oligomers without stacked ß-sheet fibril structures. Our results suggest that PrPC accumulating plaques are associated with more soluble Aß oligomers, and appear even prior to AD. The investigation of PrPC accumulating plaques may provide new insights into AD.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Placa Amiloide/patología , Proteínas Priónicas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Proteínas PrPC/metabolismo
16.
J Biol Chem ; 295(37): 13023-13030, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719008

RESUMEN

In studies of HIV-1, virus production is normally monitored by either a reverse transcriptase assay or a p24 antigen capture ELISA. However, these assays are costly and time-consuming for routine handling of a large number of HIV-1 samples. For example, sample dilution is always required in the ELISA procedure to determine p24 protein levels because of the very narrow range of detectable concentrations in this assay. Here, we establish a novel HIV-1 production assay system to solve the aforementioned problems by using a recently developed small peptide tag called HiBiT. This peptide is a fragment of NanoLuc luciferase and generates a strong luminescent signal when complemented with the remaining subunit. To employ this technology, we constructed a novel full-length proviral HIV-1 DNA clone and a lentiviral packaging vector in which the HiBiT tag was added to the C terminus of the integrase. Tagging the integrase with the HiBiT sequence did not impede the resultant virus production, infectivity, or susceptibility to an integrase inhibitor. EM revealed normal morphology of the virus particles. Most importantly, by comparing between ELISA and the HiBiT luciferase assay, we successfully obtained an excellent linear correlation between p24 concentrations and HiBiT-based luciferase activity. Overall, we conclude that HiBiT-tagged viruses can replace the parental HIV-1 and lentiviral vectors, which enables us to perform a super-rapid, inexpensive, convenient, simple, and highly accurate quantitative assay for HIV-1/lentivirus production. This system can be widely applied to a variety of virological studies, along with screening for candidates of future antiviral drugs.


Asunto(s)
Vectores Genéticos , VIH-1 , Luciferasas , Péptidos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , VIH-1/genética , VIH-1/metabolismo , Células HeLa , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Péptidos/genética , Péptidos/metabolismo
17.
Emerg Infect Dis ; 26(9)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32412897

RESUMEN

An autopsy of a patient in Japan with coronavirus disease indicated pneumonia lung pathology, manifested as diffuse alveolar damage. We detected severe acute respiratory syndrome coronavirus 2 antigen in alveolar epithelial cells and macrophages. Coronavirus disease is essentially a lower respiratory tract disease characterized by direct viral injury of alveolar epithelial cells.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Anciano de 80 o más Años , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Autopsia , COVID-19 , Infecciones por Coronavirus/virología , Femenino , Humanos , Inmunohistoquímica , Japón , Pulmón/patología , Pulmón/virología , Pandemias , Neumonía Viral/virología , SARS-CoV-2
18.
Emerg Infect Dis ; 26(7)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32275498

RESUMEN

In early 2020, Japan repatriated 566 nationals from China. Universal laboratory testing and 14-day monitoring of returnees detected 12 cases of severe acute respiratory syndrome coronavirus 2 infection; initial screening results were negative for 5. Common outcomes were remaining asymptomatic (n = 4) and pneumonia (n = 6). Overall, screening performed poorly.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Adulto , Anciano , COVID-19 , China , Femenino , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Pandemias , Reacción en Cadena de la Polimerasa , SARS-CoV-2 , Viaje
19.
PLoS One ; 14(5): e0216807, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31095605

RESUMEN

Classical- (C-) and atypical L-type bovine spongiform encephalopathy (BSE) prions cause different pathological phenotypes in cattle brains, and the disease-associated forms of each prion protein (PrPSc) has a dissimilar biochemical signature. Bovine C-BSE prions are the causative agent of variant Creutzfeldt-Jakob disease. To date, human infection with L-BSE prions has not been reported, but they can be transmitted experimentally from cows to cynomolgus monkeys (Macaca fascicularis), a non-human primate model. When transmitted to monkeys, C- and L-BSE prions induce different pathological phenotypes in the brain. However, when isolated from infected brains, the two prion proteins (PrPSc) have similar biochemical signatures (i.e., electrophoretic mobility, glycoforms, and resistance to proteinase K). Such similarities suggest the possibility that L-BSE prions alter their virulence to that of C-BSE prions during propagation in monkeys. To clarify this possibility, we conducted bioassays using inbred mice. C-BSE prions with or without propagation in monkeys were pathogenic to mice, and exhibited comparable incubation periods in secondary passage in mice. By contrast, L-BSE prions, either with or without propagation in monkeys, did not cause the disease in mice, indicating that the pathogenicity of L-BSE prions does not converge towards a C-BSE prion type in this primate model. These results suggest that, although C- and L-BSE prions propagated in cynomolgus monkeys exhibit similar biochemical PrPSc signatures and consist of the monkey amino acid sequence, the two prions maintain strain-specific conformations of PrPSc in which they encipher and retain unique pathogenic traits.


Asunto(s)
Encéfalo , Encefalopatía Espongiforme Bovina , Priones/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Bovinos , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/patología , Encefalopatía Espongiforme Bovina/transmisión , Femenino , Humanos , Macaca fascicularis , Ratones
20.
Nat Biomed Eng ; 3(3): 206-219, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30948810

RESUMEN

Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that lack therapeutic solutions. Here, we show that the molecular chaperone (N,N'-([cyclohexylmethylene]di-4,1-phenylene)bis(2-[1-pyrrolidinyl]acetamide)), designed via docking simulations, molecular dynamics simulations and quantum chemical calculations, slows down the progress of TSEs. In vitro, the designer molecular chaperone stabilizes the normal cellular prion protein, eradicates prions in infected cells, prevents the formation of drug-resistant strains and directly inhibits the interaction between prions and abnormal aggregates, as shown via real-time quaking-induced conversion and in vitro conversion NMR. Weekly intraperitoneal injection of the chaperone in prion-infected mice prolonged their survival, and weekly intravenous administration of the compound in macaques infected with bovine TSE slowed down the development of neurological and psychological symptoms and reduced the concentration of disease-associated biomarkers in the animals' cerebrospinal fluid. The de novo rational design of chaperone compounds could lead to therapeutics that can bind to different prion protein strains to ameliorate the pathology of TSEs.


Asunto(s)
Progresión de la Enfermedad , Chaperonas Moleculares/metabolismo , Enfermedades por Prión/patología , Animales , Estimación de Kaplan-Meier , Macaca , Espectroscopía de Resonancia Magnética , Ratones , Proteínas Priónicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA