Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Dis Child ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925883

RESUMEN

OBJECTIVE: Type 1 diabetes (T1D) screening programmes testing islet autoantibodies (IAbs) in childhood can reduce life-threatening diabetic ketoacidosis. General population screening is required to detect the majority of children with T1D, since in >85% there is no family history. Age 3-5 years has been proposed as an optimal age for a single screen approach. DESIGN: Capillary samples were collected from children attending their preschool vaccination and analysed for IAbs to insulin, glutamic acid decarboxylase, islet antigen-2 and zinc transporter 8 using radiobinding/luciferase immunoprecipitation system assays. Acceptability was assessed using semistructured interviews and open-ended postcard questionnaires with parents. SETTING: Two primary care practices in Oxfordshire, UK. MAIN OUTCOME MEASURES: The ability to collect capillary blood to test IAbs in children at the routine preschool vaccination (3.5-4 years). RESULTS: Of 134 parents invited, 66 (49%) were recruited (median age 3.5 years (IQR 3.4-3.6), 26 (39.4%) male); 63 provided a sample (97% successfully), and one participant was identified with a single positive IAb. Parents (n=15 interviews, n=29 postcards) were uniformly positive about screening aligned to vaccination and stated they would have been less likely to take part had screening been a separate visit. Themes identified included preparedness for T1D and the long-term benefit outweighing short-term upset. The perceived volume of the capillary sample was a potential concern and needs optimising. CONCLUSIONS: Capillary IAb testing is a possible method to screen children for T1D. Aligning collection to the preschool vaccination visit can be convenient for families without the need for an additional visit.

2.
Acta Neuropathol ; 147(1): 87, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761203

RESUMEN

Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.


Asunto(s)
Anticuerpos , Western Blotting , Encéfalo , Inmunohistoquímica , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/inmunología , Humanos , Inmunohistoquímica/métodos , Anticuerpos/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Fosforilación , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inmunología , Reproducibilidad de los Resultados
3.
Cell Rep ; 43(6): 114285, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38819987

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a plasma protein that controls cholesterol homeostasis. Here, we design a human PCSK9 mimic, named HIT01, with no consecutive 9-residue stretch in common with any human protein as a potential heart attack vaccine. Murine immunizations with HIT01 reduce low-density lipoprotein (LDL) and cholesterol levels by 40% and 30%, respectively. Immunization of cynomolgus macaques with HIT01-K21Q-R218E, a cleavage-resistant variant, elicits high-titer PCSK9-directed antibody responses and significantly reduces serum levels of cholesterol 2 weeks after each immunization. However, HIT01-K21Q-R218E immunizations also increase serum PCSK9 levels by up to 5-fold, likely due to PCSK9-binding antibodies altering the half-life of PCSK9. While vaccination with a PCSK9 mimic can induce antibodies that block interactions of PCSK9 with the LDL receptor, PCSK9-binding antibodies appear to alter homeostatic levels of PCSK9, thereby confounding its vaccine impact. Our results nevertheless suggest a mechanism for increasing the half-life of soluble regulatory factors by vaccination.


Asunto(s)
Colesterol , Inmunización , Macaca fascicularis , Proproteína Convertasa 9 , Proproteína Convertasa 9/inmunología , Proproteína Convertasa 9/metabolismo , Animales , Humanos , Ratones , Colesterol/metabolismo , Colesterol/sangre , Inmunización/métodos , Receptores de LDL/metabolismo , Femenino , Ratones Endogámicos C57BL
4.
Diabetologia ; 67(6): 995-1008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517484

RESUMEN

AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.


Asunto(s)
Autoanticuerpos , Péptido C , Diabetes Mellitus Tipo 1 , Hemoglobina Glucada , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/epidemiología , Adolescente , Niño , Masculino , Femenino , Péptido C/sangre , Adulto , Adulto Joven , Preescolar , Autoanticuerpos/sangre , Hemoglobina Glucada/metabolismo , Glucemia/metabolismo , Estudios de Cohortes , Lactante , Europa (Continente)/epidemiología , Persona de Mediana Edad , Células Secretoras de Insulina/metabolismo
5.
Mol Psychiatry ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361127

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-ß (Aß) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aß-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aß were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aß-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aß-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.

6.
iScience ; 27(2): 108877, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318357

RESUMEN

Soluble 'SOSIP'-stabilized HIV-1 envelope glycoprotein (Env) trimers elicit dominant antibody responses targeting their glycan-free base regions, potentially diminishing neutralizing responses. Previously, using a nonhuman primate model, we demonstrated that priming with fusion peptide (FP)-carrier conjugate immunogens followed by boosting with Env trimers reduced the anti-base response. Further, we demonstrated that longer immunization intervals further reduced anti-base responses and increased neutralization breadth. Here, we demonstrate that long trimer-boosting intervals, but not long FP immunization intervals, reduce the anti-base response. Additionally, we identify that FP priming before trimer immunization enhances antibody avidity to the Env trimer. We also establish that adjuvants Matrix M and Adjuplex further reduce anti-base responses and increase neutralizing titers. FP priming, long trimer-immunization interval, and an appropriate adjuvant can thus reduce anti-base antibody responses and improve Env-directed vaccine outcomes.

7.
Nat Microbiol ; 9(3): 776-786, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321182

RESUMEN

Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Vacunas , Humanos , Animales , Macaca mulatta , Intestino Delgado
9.
Sci Transl Med ; 16(730): eadh9039, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38232141

RESUMEN

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 µg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca mulatta , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/prevención & control , Anticuerpos Monoclonales , Péptidos , Anticuerpos Neutralizantes
10.
Sci Transl Med ; 16(728): eadd5960, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170789

RESUMEN

Durable humoral immunity is mediated by long-lived plasma cells (LLPCs) that reside in the bone marrow. It remains unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein vaccination is able to elicit and maintain LLPCs. Here, we describe a sensitive method to identify and isolate antigen-specific LLPCs by tethering antibodies secreted by these cells onto the cell surface. Using this method, we found that two doses of adjuvanted SARS-CoV-2 spike protein vaccination are able to induce spike protein-specific LLPC reservoirs enriched for receptor binding domain specificities in the bone marrow of nonhuman primates that are detectable for several months after vaccination. Immunoglobulin gene sequencing confirmed that several of these LLPCs were clones of memory B cells elicited 2 weeks after boost that had undergone further somatic hypermutation. Many of the antibodies secreted by these LLPCs also exhibited improved neutralization and cross-reactivity compared with earlier time points. These findings establish our method as a means to sensitively and reliably detect rare antigen-specific LLPCs and demonstrate that adjuvanted SARS-CoV-2 spike protein vaccination establishes spike protein-specific LLPC reservoirs.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Células Plasmáticas/metabolismo , Anticuerpos Antivirales , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Adyuvantes Inmunológicos , Primates , Anticuerpos Neutralizantes
11.
Diabetologia ; 67(4): 670-678, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214711

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to determine whether BMI in early childhood was affected by the COVID-19 pandemic and containment measures, and whether it was associated with the risk for islet autoimmunity. METHODS: Between February 2018 and May 2023, data on BMI and islet autoimmunity were collected from 1050 children enrolled in the Primary Oral Insulin Trial, aged from 4.0 months to 5.5 years of age. The start of the COVID-19 pandemic was defined as 18 March 2020, and a stringency index was used to assess the stringency of containment measures. Islet autoimmunity was defined as either the development of persistent confirmed multiple islet autoantibodies, or the development of one or more islet autoantibodies and type 1 diabetes. Multivariate linear mixed-effect, linear and logistic regression methods were applied to assess the effect of the COVID-19 pandemic and the stringency index on early-childhood BMI measurements (BMI as a time-varying variable, BMI at 9 months of age and overweight risk at 9 months of age), and Cox proportional hazard models were used to assess the effect of BMI measurements on islet autoimmunity risk. RESULTS: The COVID-19 pandemic was associated with increased time-varying BMI (ß = 0.39; 95% CI 0.30, 0.47) and overweight risk at 9 months (ß = 0.44; 95% CI 0.03, 0.84). During the COVID-19 pandemic, a higher stringency index was positively associated with time-varying BMI (ß = 0.02; 95% CI 0.00, 0.04 per 10 units increase), BMI at 9 months (ß = 0.13; 95% CI 0.01, 0.25) and overweight risk at 9 months (ß = 0.23; 95% CI 0.03, 0.43). A higher age-corrected BMI and overweight risk at 9 months were associated with increased risk for developing islet autoimmunity up to 5.5 years of age (HR 1.16; 95% CI 1.01, 1.32 and HR 1.68, 95% CI 1.00, 2.82, respectively). CONCLUSIONS/INTERPRETATION: Early-childhood BMI increased during the COVID-19 pandemic, and was influenced by the level of restrictions during the pandemic. Controlling for the COVID-19 pandemic, elevated BMI during early childhood was associated with increased risk for childhood islet autoimmunity in children with genetic susceptibility to type 1 diabetes.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Preescolar , Autoinmunidad/genética , Índice de Masa Corporal , Pandemias , Sobrepeso/complicaciones , COVID-19/epidemiología , COVID-19/complicaciones , Autoanticuerpos
12.
BMJ Paediatr Open ; 8(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216311

RESUMEN

BACKGROUND: Vitamin D insufficiency (VDI) may be a factor in the development of type 1 diabetes (T1D). The aim of this study is to investigate the presence and persistence of VDI in a large cohort of infants with increased risk of developing T1D, in light of the differences in local supplementation guidelines. METHODS: In the POInT Study, a multicentre primary prevention study between February 2018 and March 2021 in Germany, Poland, Belgium, England and Sweden, including infants aged 4-7 months at high genetic risk of developing ß-cell autoantibodies, vitamin D levels were analysed at each study visit from inclusion (4-7 months) until 3 years, with an interval of 2 months (first three visits) or 4-6 months (visits 4-8). The protocol actively promotes vitamin D sufficiency to optimise immune tolerance. VDI was defined as a concentration below 30 ng/mL and was treated according to local guidelines of participating centres. Recovery from VDI was defined as a concentration above or equal to 30 ng/mL on the subsequent visit after VDI. RESULTS: 1050 infants were included, of which 5937 vitamin D levels were available for analyses. VDI was observed in 1464 (24.7%) visits and 507 (46.1%) of these were not resolved at the next visit. The risk of having VDI was independently associated with season (higher in winter), weight (higher with increased weight), age (higher with increased age) and country (higher in England). The risk of not recovering from VDI was independently associated with the season of the previously determined VDI, which was higher if VDI was identified in winter. CONCLUSIONS: VDI is frequent in infants with increased risk of developing T1D. Treatment guidelines for VDI do not seem effective. Increasing supplementation dosages in this patient population seems warranted, especially during winter, and increasing dosages more aggressively after VDI should be considered.


Asunto(s)
Diabetes Mellitus Tipo 1 , Deficiencia de Vitamina D , Lactante , Humanos , Vitamina D/uso terapéutico , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/complicaciones , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Vitaminas , Factores de Riesgo
13.
Nat Commun ; 15(1): 285, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177144

RESUMEN

Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.


Asunto(s)
Fiebre de Lassa , Anticuerpos de Dominio Único , Animales , Cobayas , Virus Lassa , Anticuerpos Antivirales , Anticuerpos Neutralizantes
14.
Cell Rep ; 43(2): 113706, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38294906

RESUMEN

Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.


Asunto(s)
Filoviridae , Infecciones por Orthomyxoviridae , Animales , Humanos , Inmunoinformática , Macaca , Antivirales
15.
Diabetes Care ; 47(2): 239-245, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38087932

RESUMEN

OBJECTIVE: C-peptide and islet autoantibodies are key type 1 diabetes biomarkers, typically requiring venous sampling, which limits their utility. We assessed transdermal capillary blood (TCB) collection as a practical alternative. RESEARCH DESIGN AND METHODS: Ninety-one individuals (71 with type 1 diabetes, 20 control; individuals with type 1 diabetes: aged median 14.8 years [interquartile range (IQR) 9.1-17.1], diabetes duration 4.0 years [1.5-7.7]; control individuals: 42.2 years [38.0-52.1]) underwent contemporaneous venous and TCB sampling for measurement of plasma C-peptide. Participants with type 1 diabetes also provided venous serum and plasma, and TCB plasma for measurement of autoantibodies to glutamate decarboxylase, islet antigen-2, and zinc transporter 8. The ability of TCB plasma to detect significant endogenous insulin secretion (venous C-peptide ≥200 pmol/L) was compared along with agreement in levels, using Bland-Altman. Venous serum was compared with venous and TCB plasma for detection of autoantibodies, using established thresholds. Acceptability was assessed by age-appropriate questionnaire. RESULTS: Transdermal sampling took a mean of 2.35 min (SD 1.49). Median sample volume was 50 µL (IQR 40-50) with 3 of 91 (3.3%) failures, and 13 of 88 (14.7%) <35 µL. TCB C-peptide showed good agreement with venous plasma (mean venous ln[C-peptide] - TCB ln[C-peptide] = 0.008, 95% CI [-0.23, 0.29], with 100% [36 of 36] sensitivity/100% [50 of 50] specificity to detect venous C-peptide ≥200 pmol/L). Where venous serum in multiple autoantibody positive TCB plasma agreed in 22 of 32 (sensitivity 69%), comparative specificity was 35 of 36 (97%). TCB was preferred to venous sampling (type 1 diabetes: 63% vs. 7%; 30% undecided). CONCLUSIONS: Transdermal capillary testing for C-peptide is a sensitive, specific, and acceptable alternative to venous sampling; TCB sampling for islet autoantibodies needs further assessment.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adulto , Niño , Humanos , Anciano , Péptido C , Autoanticuerpos , Recolección de Muestras de Sangre , Biomarcadores , Glutamato Descarboxilasa
16.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38076895

RESUMEN

SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.

17.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986823

RESUMEN

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

18.
J Immunol ; 211(11): 1643-1655, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37861342

RESUMEN

TLR agonists are a promising class of immune system stimulants investigated for immunomodulatory applications in cancer immunotherapy and viral diseases. In this study, we sought to characterize the safety and immune activation achieved by different TLR agonists in rhesus macaques (Macaca mulatta), a useful preclinical model of complex immune interactions. Macaques received one of three TLR agonists, followed by plasma cytokine, immune cell subset representation, and blood cell activation measurements. The TLR4 agonist LPS administered i.v. induced very transient immune activation, including TNF-α expression and monocyte activation. The TLR7/8 agonist 2BXy elicited more persistent cytokine expression, including type I IFN, IL-1RA, and the proinflammatory IL-6, along with T cell and monocyte activation. Delivery of 2BXy i.v. and i.m. achieved comparable immune activation, which increased with escalating dose. Finally, i.v. bacillus Calmette-Guérin (BCG) vaccination (which activates multiple TLRs, especially TLR2/4) elicited the most pronounced and persistent innate and adaptive immune response, including strong induction of IFN-γ, IL-6, and IL-1RA. Strikingly, monocyte, T cell, and NK cell expression of the proliferation marker Ki67 increased dramatically following BCG vaccination. This aligned with a large increase in total and BCG-specific cells measured in the lung. Principal component analysis of the combined cytokine expression and cellular activation responses separated animals by treatment group, indicating distinct immune activation profiles induced by each agent. In sum, we report safe, effective doses and routes of administration for three TLR agonists that exhibit discrete immunomodulatory properties in primates and may be leveraged in future immunotherapeutic strategies.


Asunto(s)
Vacuna BCG , Proteína Antagonista del Receptor de Interleucina 1 , Animales , Macaca mulatta , Interleucina-6 , Citocinas/metabolismo
19.
JAMA ; 330(12): 1151-1160, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37682551

RESUMEN

Importance: The incidence of diabetes in childhood has increased during the COVID-19 pandemic. Elucidating whether SARS-CoV-2 infection is associated with islet autoimmunity, which precedes type 1 diabetes onset, is relevant to disease etiology and future childhood diabetes trends. Objective: To determine whether there is a temporal relationship between SARS-CoV-2 infection and the development of islet autoimmunity in early childhood. Design, Setting, and Participants: Between February 2018 and March 2021, the Primary Oral Insulin Trial, a European multicenter study, enrolled 1050 infants (517 girls) aged 4 to 7 months with a more than 10% genetically defined risk of type 1 diabetes. Children were followed up through September 2022. Exposure: SARS-CoV-2 infection identified by SARS-CoV-2 antibody development in follow-up visits conducted at 2- to 6-month intervals until age 2 years from April 2018 through June 2022. Main Outcomes and Measures: The development of multiple (≥2) islet autoantibodies in follow-up in consecutive samples or single islet antibodies and type 1 diabetes. Antibody incidence rates and risk of developing islet autoantibodies were analyzed. Results: Consent was obtained for 885 (441 girls) children who were included in follow-up antibody measurements from age 6 months. SARS-CoV-2 antibodies developed in 170 children at a median age of 18 months (range, 6-25 months). Islet autoantibodies developed in 60 children. Six of these children tested positive for islet autoantibodies at the same time as they tested positive for SARS-CoV-2 antibodies and 6 at the visit after having tested positive for SARS-CoV-2 antibodies. The sex-, age-, and country-adjusted hazard ratio for developing islet autoantibodies when the children tested positive for SARS-CoV-2 antibodies was 3.5 (95% CI, 1.6-7.7; P = .002). The incidence rate of islet autoantibodies was 3.5 (95% CI, 2.2-5.1) per 100 person-years in children without SARS-CoV-2 antibodies and 7.8 (95% CI, 5.3-19.0) per 100 person-years in children with SARS-CoV-2 antibodies (P = .02). Islet autoantibody risk in children with SARS-CoV-2 antibodies was associated with younger age (<18 months) of SARS-CoV-2 antibody development (HR, 5.3; 95% CI, 1.5-18.3; P = .009). Conclusion and relevance: In young children with high genetic risk of type 1 diabetes, SARS-CoV-2 infection was temporally associated with the development of islet autoantibodies.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Preescolar , Femenino , Humanos , Lactante , Anticuerpos Antivirales/inmunología , Autoanticuerpos/inmunología , Autoinmunidad/inmunología , COVID-19/complicaciones , COVID-19/inmunología , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Pandemias , SARS-CoV-2 , Islotes Pancreáticos/inmunología , Masculino , Predisposición Genética a la Enfermedad
20.
PLoS Pathog ; 19(9): e1011584, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37738240

RESUMEN

The Pneumoviridae family of viruses includes human metapneumovirus (HMPV) and respiratory syncytial virus (RSV). The closely related Paramyxoviridae family includes parainfluenza viruses (PIVs). These three viral pathogens cause acute respiratory tract infections with substantial disease burden in the young, the elderly, and the immune-compromised. While promising subunit vaccines are being developed with prefusion-stabilized forms of the fusion glycoproteins (Fs) of RSV and PIVs, for which neutralizing titers elicited by the prefusion (pre-F) conformation of F are much higher than for the postfusion (post-F) conformation, with HMPV, pre-F and post-F immunogens described thus far elicit similar neutralizing responses, and it has been unclear which conformation, pre-F or post-F, would be the most effective HMPV F-vaccine immunogen. Here, we investigate the impact of further stabilizing HMPV F in the pre-F state. We replaced the furin-cleavage site with a flexible linker, creating a single chain F that yielded increased amounts of pre-F stabilized trimers, enabling the generation and assessment of F trimers stabilized by multiple disulfide bonds. Introduced prolines could increase both expression yields and antigenic recognition by the pre-F specific antibody, MPE8. The cryo-EM structure of a triple disulfide-stabilized pre-F trimer with the variable region of antibody MPE8 at 3.25-Å resolution confirmed the formation of designed disulfides and provided structural details on the MPE8 interface. Immunogenicity assessments in naïve mice showed the triple disulfide-stabilized pre-F trimer could elicit high titer neutralization, >10-fold higher than elicited by post-F. Immunogenicity assessments in pre-exposed rhesus macaques showed the triple disulfide-stabilized pre-F could recall high neutralizing titers after a single immunization, with little discrimination in the recall response between pre-F and post-F immunogens. However, the triple disulfide-stabilized pre-F adsorbed HMPV-directed responses from commercially available pooled human immunoglobulin more fully than post-F. Collectively, these results suggest single-chain triple disulfide-stabilized pre-F trimers to be promising HMPV-vaccine antigens.


Asunto(s)
Metapneumovirus , Virus Sincitial Respiratorio Humano , Anciano , Humanos , Animales , Ratones , Macaca mulatta , Anticuerpos , Antígenos Virales , Disulfuros , Glicoproteínas , Virus de la Parainfluenza 1 Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA