Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 111: 117868, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39137475

RESUMEN

Nonsense mutations in the coding region turn amino acid codons into termination codons, resulting in premature termination codons (PTCs). In the case of the in-frame PTC, if translation does not stop at the PTC but continues to the natural termination codon (NTC) with the insertion of an amino acid, known as readthrough, the full-length peptide is formed, albeit with a single amino acid mutation. We have previously developed the functionality-transfer oligonucleotide (FT-Probe), which forms a hybrid complex with RNA of a complementary sequence to transfer the functional group, resulting in modification of the 4-amino group of cytosine or the 6-amino group of adenine. In this study, the FT-Probe was used to chemically modify the adenosines of the PTC (UAA, UAG, and UGA) of mRNA, which were assayed for the readthrough in a reconstituted Escherichia coli translation system. The third adenosine-modified UAA produced three readthrough peptides incorporating tyrosine, glutamine and lysine at the UAA site. It should be noted that the additional modification with a cyclodextrin only induced glutamine incorporation. The adenosine modified UGA induced readthrough very efficiently with selective tryptophan incorporation. Readthrough of the modified UGA is caused by inhibition of the RF2 function. This study has demonstrated that the chemical modification of the adenosine 6-amino group of the PTC is a strategy for effective readthrough in a prokaryotic translation system.


Asunto(s)
Adenosina , Escherichia coli , Péptidos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Adenosina/química , Adenosina/análogos & derivados , Péptidos/química , Péptidos/farmacología , Codón sin Sentido , Codón de Terminación/genética , Biosíntesis de Proteínas/efectos de los fármacos
2.
Chem Pharm Bull (Tokyo) ; 70(7): 498-504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35786569

RESUMEN

Due to the importance of the RNA chemical modifications, methods for the selective chemical modification at a predetermined site of the internal position of RNA have attracted much attention. We have developed functional artificial nucleic acids that modify a specific site of RNA in a site- and base-selective manner. In addition, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) has been shown to introduce additional molecules on the alkynes attached to the pyridine ring. However, it was found that some azide compounds produced the cycloadduct in lower yields. Therefore, in this study, we synthesized the pyridinyl transfer group with the alkyne attached via a polyethylene glycol (PEG) linker with a different length and optimized its structure for both the transfer and CuAAC reaction. Three new transfer groups were synthesized by introducing an alkyne group at the end of the triethylene (11), tetraethylene (12) or pentaethylen glycol linker (13) at the 5-position of the pyridine ring of (E)-3-iodo-1-(pyridin-2-yl)prop-2-en-1-one. These transfer groups were introduced to the 6-thioguanine base in the oligodeoxynucleotide (ODN) in high yields. The transfer groups 11 and 12 more efficiently underwent the cytosine modification. For the CuAAC reaction, although 7 showed low adduct yields with the anionic azide compound, the new transfer groups, especially 12 and 13, significantly improved the yields. In conclusion, the transfer groups 12 and 13 were determined to be promising compounds for the modification of long RNAs.


Asunto(s)
Azidas , ARN , Alquinos/química , Azidas/química , Oligodesoxirribonucleótidos/química , Piridinas , ARN/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA