Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
mBio ; 15(10): e0236024, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39248571

RESUMEN

Borrelia burgdorferi, the agent of Lyme disease, is estimated to cause >400,000 annual infections in the United States. Serology is the primary laboratory method to support the diagnosis of Lyme disease, but current methods have intrinsic limitations that require alternative approaches or targets. We used a high-density peptide array that contains >90,000 short overlapping peptides to catalog immunoreactive linear epitopes from >60 primary antigens of B. burgdorferi. We then pursued a machine learning approach to identify immunoreactive peptide panels that provide optimal Lyme disease serodiagnosis and can differentiate antibody responses at various stages of disease. We examined 226 serum samples from the Lyme Biobank and the National Institutes of Health, which included sera from 110 individuals diagnosed with Lyme disease, 31 probable cases from symptomatic individuals, and 85 healthy controls. Cases were grouped based on disease stage and presentation and included individuals with early localized, early disseminated, and late Lyme disease. We identified a peptide panel originating from 14 different epitopes that differentiated cases versus controls, whereas another peptide panel built from 12 unique epitopes differentiated subjects with various disease manifestations. Our method demonstrated an improvement in B. burgdorferi antibody detection over the current two-tiered testing approach and confirmed the key diagnostic role of VlsE and FlaB antigens at all stages of Lyme disease. We also uncovered epitopes that triggered a temporal antibody response that was useful for differentiation of early and late disease. Our findings can be used to streamline serologic targets and improve antibody-based diagnosis of Lyme disease. IMPORTANCE: Serology is the primary method of Lyme disease diagnosis, but this approach has limitations, particularly early in disease. Currently employed antibody detection assays can be improved by the identification of alternative immunodominant epitopes and the selection of optimal diagnostic targets. We employed high-density peptide arrays that enabled precise epitope mapping for a wide range of B. burgdorferi antigens. In combination with machine learning, this approach facilitated the selection of serologic targets early in disease and the identification of serological indicators associated with different manifestations of Lyme disease. This study provides insights into differential antibody responses during infection and outlines a new approach for improved serologic diagnosis of Lyme disease.


Asunto(s)
Anticuerpos Antibacterianos , Antígenos Bacterianos , Borrelia burgdorferi , Enfermedad de Lyme , Enfermedad de Lyme/diagnóstico , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/sangre , Borrelia burgdorferi/inmunología , Humanos , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Péptidos/inmunología , Pruebas Serológicas/métodos , Epítopos/inmunología , Aprendizaje Automático , Masculino , Femenino , Persona de Mediana Edad
2.
Pathogens ; 12(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003835

RESUMEN

Co-infections are a poorly understood aspect of tick-borne diseases. In the United States alone, nineteen different tick-borne pathogens have been identified. The majority of these agents are transmitted by only two tick species, Ixodes scapularis and Amblyomma americanum. Surveillance studies have demonstrated the presence of multiple pathogens in individual ticks suggesting a risk of polymicrobial transmission to humans. However, relatively few studies have explored this relationship and its impact on human disease. One of the key factors for this deficiency are the intrinsic limitations associated with molecular and serologic assays employed for the diagnosis of tick-borne diseases. Limitations in the sensitivity, specificity and most importantly, the capacity for inclusion of multiple agents within a single assay represent the primary challenges for the accurate detection of polymicrobial tick-borne infections. This review will focus on outlining these limitations and discuss potential solutions for the enhanced diagnosis of tick-borne co-infections.

3.
J Med Virol ; 95(8): e28993, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37526404

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is estimated to affect 0.4%-2.5% of the global population. Most cases are unexplained; however, some patients describe an antecedent viral infection or response to antiviral medications. We report here a multicenter study for the presence of viral nucleic acid in blood, feces, and saliva of patients with ME/CFS using polymerase chain reaction and high-throughput sequencing. We found no consistent group-specific differences other than a lower prevalence of anelloviruses in cases compared to healthy controls. Our findings suggest that future investigations into viral infections in ME/CFS should focus on adaptive immune responses rather than surveillance for viral gene products.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/epidemiología , Saliva , Viroma , Heces
4.
J Clin Invest ; 133(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649080

RESUMEN

The RNA polymerase alternative σ factor RpoS in Borrelia burgdorferi (Bb), the Lyme disease pathogen, is responsible for programmatic-positive and -negative gene regulation essential for the spirochete's dual-host enzootic cycle. RpoS is expressed during tick-to-mammal transmission and throughout mammalian infection. Although the mammalian-phase RpoS regulon is well described, its counterpart during the transmission blood meal is unknown. Here, we used Bb-specific transcript enrichment by tick-borne disease capture sequencing (TBDCapSeq) to compare the transcriptomes of WT and ΔrpoS Bb in engorged nymphs and following mammalian host-adaptation within dialysis membrane chambers. TBDCapSeq revealed dramatic changes in the contours of the RpoS regulon within ticks and mammals and further confirmed that RpoS-mediated repression is specific to the mammalian-phase of Bb's enzootic cycle. We also provide evidence that RpoS-dependent gene regulation, including repression of tick-phase genes, is required for persistence in mice. Comparative transcriptomics of engineered Bb strains revealed that the Borrelia oxidative stress response regulator (BosR), a noncanonical Fur family member, and the cyclic diguanosine monophosphate (c-di-GMP) effector PlzA reciprocally regulate the function of RNA polymerase complexed with RpoS. BosR is required for RpoS-mediated transcription activation and repression in addition to its well-defined role promoting transcription of rpoS by the RNA polymerase alternative σ factor RpoN. During transmission, ligand-bound PlzA antagonizes RpoS-mediated repression, presumably acting through BosR.


Asunto(s)
Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Garrapatas , Ratones , Animales , Borrelia burgdorferi/genética , Borrelia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Garrapatas/genética , Factor sigma/genética , Factor sigma/metabolismo , Enfermedad de Lyme/genética , Mamíferos/metabolismo , Regulación Bacteriana de la Expresión Génica
5.
J Acquir Immune Defic Syndr ; 93(1): 79-85, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36701194

RESUMEN

BACKGROUND: The immunopathology of disseminated HIV-associated tuberculosis (HIV/TB), a leading cause of critical illness and death among persons living with HIV in sub-Saharan Africa, is incompletely understood. Reflective of hematogenously disseminated TB, detection of lipoarabinomannan (LAM) in urine is associated with greater bacillary burden and poor outcomes in adults with HIV/TB. METHODS: We determined the relationship between detection of urine TB-LAM, organ dysfunction, and host immune responses in a prospective cohort of adults hospitalized with severe HIV/TB in Uganda. Generalized additive models were used to analyze the association between urine TB-LAM grade and concentrations of 14 soluble immune mediators. Whole-blood RNA-sequencing data were used to compare transcriptional profiles between patients with high- vs. low-grade TB-LAM results. RESULTS: Among 157 hospitalized persons living with HIV, 40 (25.5%) had positive urine TB-LAM testing. Higher TB-LAM grade was associated with more severe physiologic derangement, organ dysfunction, and shock. Adjusted generalized additive models showed that higher TB-LAM grade was significantly associated with higher concentrations of mediators reflecting proinflammatory innate and T-cell activation and chemotaxis (IL-8, MIF, MIP-1ß/CCL4, and sIL-2Ra/sCD25). Transcriptionally, patients with higher TB-LAM grades demonstrated multifaceted impairment of antibacterial defense including reduced expression of genes encoding cytotoxic and autophagy-related proteins and impaired cross-talk between innate and cell-mediated immune effectors. CONCLUSIONS: Our findings add to emerging data suggesting pathobiological relationships between LAM, TB dissemination, innate cell activation, and evasion of host immunity in severe HIV/TB. Further translational studies are needed to elucidate the role for immunomodulatory therapies, in addition to optimized anti-TB treatment, in this often critically ill population.


Asunto(s)
Infecciones por VIH , Tuberculosis , Humanos , Adulto , Infecciones por VIH/epidemiología , Estudios Prospectivos , Uganda , Insuficiencia Multiorgánica/complicaciones , Tuberculosis/complicaciones , Lipopolisacáridos/orina , Inmunidad Innata , Sensibilidad y Especificidad
6.
AIDS ; 37(2): 233-245, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355913

RESUMEN

BACKGROUND: The global burden of sepsis is concentrated in high HIV-burden settings in sub-Saharan Africa (SSA). Despite this, little is known about the immunopathology of sepsis in persons with HIV (PWH) in the region. We sought to determine the influence of HIV on host immune responses and organ dysfunction among adults hospitalized with suspected sepsis in Uganda. DESIGN: Prospective cohort study. METHODS: We compared organ dysfunction and 30-day outcome profiles of PWH and those without HIV. We quantified 14 soluble immune mediators, reflective of key domains of sepsis immunopathology, and performed whole-blood RNA-sequencing on samples from a subset of patients. We used propensity score methods to match PWH and those without HIV by demographics, illness duration, and clinical severity, and compared immune mediator concentrations and gene expression profiles across propensity score-matched groups. RESULTS: Among 299 patients, 157 (52.5%) were PWH (clinical stage 3 or 4 in 80.3%, 67.7% with known HIV on antiretroviral therapy). PWH presented with more severe physiologic derangement and shock, and had higher 30-day mortality (34.5% vs. 10.2%; P  < 0.001). Across propensity score-matched groups, PWH exhibited greater pro-inflammatory immune activation, including upregulation of interleukin (IL)-6, IL-8, IL-15, IL-17 and HMGB1 signaling, with concomitant T-cell exhaustion, prothrombotic pathway activation, and angiopoeitin-2-related endothelial dysfunction. CONCLUSIONS: Sepsis-related organ dysfunction and mortality in Uganda disproportionately affect PWH, who demonstrate exaggerated activation of multiple immunothrombotic and metabolic pathways implicated in sepsis pathogenesis. Further investigations are needed to refine understanding of sepsis immunopathology in PWH, particularly mechanisms amenable to therapeutic manipulation.


Asunto(s)
Infecciones por VIH , Sepsis , Humanos , Adulto , Infecciones por VIH/complicaciones , Insuficiencia Multiorgánica/complicaciones , Estudios Prospectivos , Uganda/epidemiología , Sepsis/complicaciones , Interleucina-6
7.
Ticks Tick Borne Dis ; 13(5): 101999, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35816827

RESUMEN

Anaplasma phagocytophilum and Babesia microti are emerging tick-borne pathogens in the United States. Although active infection is typically diagnosed by direct diagnostic tests, such as blood smear or polymerase chain reaction assay, serologic assays can be helpful to identify past infections, and the use of acute plus convalescent testing can potentially identify recent infections. We employed a peptide array to select sets of linear peptides for serologic diagnosis of infections with A. phagocytophilum and B. microti. Three optimal peptides were selected for each agent based on their performance with clinical specimens. All three A. phagocytophilum peptides were located within the conserved fragments of the MSP2 antigen. Two B. microti peptides were located in the N terminus of the SA-1 antigen; the third was in the BMN 1-17 antigen. We found that these peptides can be a useful tool for detection of antibody reactivity to both of these pathogens.


Asunto(s)
Anaplasma phagocytophilum , Babesia microti , Babesiosis , Borrelia burgdorferi , Anticuerpos , Babesiosis/diagnóstico , Humanos , Péptidos
8.
Viruses ; 14(5)2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35632671

RESUMEN

Tick-borne diseases are a serious threat to both public and veterinary health. In this study, we used high-throughput sequencing to characterize the virome of three tick species implicated in the spread of vector-borne disease throughout Croatia. Ten viruses were identified, including seven potential novel species within the viral families Flaviviridae, Nyamiviridae, Rhabdoviridae, Peribunyaviridae, Phenuiviridae, and Nairoviridae.


Asunto(s)
Dermacentor , Ixodes , Ixodidae , Animales , Croacia , Humanos , Viroma
9.
J Med Entomol ; 59(4): 1434-1442, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35639921

RESUMEN

We report the multi-year collection of the Gulf Coast tick, Amblyomma maculatum Koch (Acaridae: Ixodida: Ixodidae) in Staten Island, New York City (NYC) as well as their detection in Brooklyn, NYC, and in Atlantic and Cumberland counties in southern New Jersey, USA. The first and most common detections were of adults, however in Freshkills Park on Staten Island larvae were also collected in a following year. The presence of larvae indicates that adults are successfully finding hosts in Staten Island. While it is still unknown how A. americanum reached Staten Island, immatures of this species often parasitize migratory birds, which are now often seen in Freshkills Park. We describe the landscape features of the area in Staten Island where populations were highest and larvae were detected, which could have facilitated the establishment of A. maculatum. Notably, we also report the presence of human pathogens Rickettsia parkeri in 5/10 (50%) of adults tested and R. felis in 1/24 (4.17%) of larvae tested. In addition to established populations in Staten Island we found evidence of A. maculatum in NJ and other NYC boroughs, suggesting current or future establishment is possible. The failure thus far to detect established populations in these areas may be due to inherent difficulties in detecting low density, spatially heterogeneous incipient populations, which could require targeted surveillance efforts for this species. We discuss the consequences to public health of the establishment of A. maculatum and detection of two additional rickettsial pathogens in the densely populated northeastern United States.


Asunto(s)
Ixodidae , Rickettsia , Rickettsiosis Exantemáticas , Garrapatas , Amblyomma , Animales , Humanos , Ixodidae/microbiología , Larva/microbiología , New England
10.
Front Microbiol ; 13: 837621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330765

RESUMEN

Assay sensitivity can be a limiting factor in the use of PCR as a tool for the detection of tick-borne pathogens in blood. We evaluated the performance of Tick-borne disease Capture Sequencing Assay (TBDCapSeq), a capture sequencing assay targeting tick-borne agents, to test 158 whole blood specimens obtained from the Lyme Disease Biobank. These included samples from 98 individuals with signs and symptoms of acute Lyme disease, 25 healthy individuals residing in Lyme disease endemic areas, and 35 samples collected from patients admitted to the Massachusetts General Hospital or referred to the infectious disease clinic. Compared to PCR, TBDCapSeq had better sensitivity and could identify infections with a wider range of tick-borne agents. TBDCapSeq identified a higher rate of samples positive for Borrelia burgdorferi (8 vs. 1 by PCR) and Babesia microti (26 vs. 15 by PCR). TBDCapSeq also identified previously unknown infections with Borrelia miyamotoi, Ehrlichia, and Rickettsia species. Overall, TBDCapSeq identified a pathogen in 43 samples vs. 23 using PCR, with four co-infections detected versus zero by PCR. We conclude that capture sequencing enables superior detection of tick-borne agents relative to PCR.

11.
Crit Care ; 26(1): 36, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35130948

RESUMEN

BACKGROUND: The global burden of sepsis is concentrated in sub-Saharan Africa, where severe infections disproportionately affect young, HIV-infected adults and high-burden pathogens are unique. In this context, poor understanding of sepsis immunopathology represents a crucial barrier to development of locally-effective treatment strategies. We sought to determine inter-individual immunologic heterogeneity among adults hospitalized with sepsis in a sub-Saharan African setting, and characterize associations between immune subtypes, infecting pathogens, and clinical outcomes. METHODS: Among a prospective observational cohort of 288 adults hospitalized with suspected sepsis in Uganda, we applied machine learning methods to 14 soluble host immune mediators, reflective of key domains of sepsis immunopathology (innate and adaptive immune activation, endothelial dysfunction, fibrinolysis), to identify immune subtypes in randomly-split discovery (N = 201) and internal validation (N = 87) sub-cohorts. In parallel, we applied similar methods to whole-blood RNA-sequencing data from a consecutive subset of patients (N = 128) to identify transcriptional subtypes, which we characterized using biological pathway and immune cell-type deconvolution analyses. RESULTS: Unsupervised clustering consistently identified two immune subtypes defined by differential activation of pro-inflammatory innate and adaptive immune pathways, with transcriptional evidence of concomitant CD56(-)/CD16( +) NK-cell expansion, T-cell exhaustion, and oxidative-stress and hypoxia-induced metabolic and cell-cycle reprogramming in the hyperinflammatory subtype. Immune subtypes defined by greater pro-inflammatory immune activation, T-cell exhaustion, and metabolic reprogramming were consistently associated with a high-prevalence of severe and often disseminated HIV-associated tuberculosis, as well as more extensive organ dysfunction, worse functional outcomes, and higher 30-day mortality. CONCLUSIONS: Our results highlight unique host- and pathogen-driven features of sepsis immunopathology in sub-Saharan Africa, including the importance of severe HIV-associated tuberculosis, and reinforce the need to develop more biologically-informed treatment strategies in the region, particularly those incorporating immunomodulation.


Asunto(s)
Infecciones por VIH , Sepsis , Tuberculosis , Humanos , Pronóstico , Uganda/epidemiología
12.
J Infect ; 84(4): 499-510, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34990710

RESUMEN

OBJECTIVES: Many patients with meningitis have no aetiology identified leading to unnecessary antimicrobials and prolonged hospitalisation. We used viral capture sequencing to identify possible pathogenic viruses in adults with community-acquired meningitis. METHODS: Cerebrospinal fluid (CSF) from 73 patients was tested by VirCapSeq-VERT, a probe set designed to capture viral targets using high throughput sequencing. Patients were categorised as suspected viral meningitis - CSF pleocytosis, no pathogen identified (n = 38), proven viral meningitis - CSF pleocytosis with a pathogen identified (n = 15) or not meningitis - no CSF pleocytosis (n = 20). RESULTS: VirCapSeq-VERT detected virus in the CSF of 16/38 (42%) of those with suspected viral meningitis, including twelve individual viruses. A potentially clinically relevant virus was detected in 9/16 (56%). Unexpectedly Toscana virus, rotavirus and Saffold virus were detected and assessed to be potential causative agents. CONCLUSION: VirCapSeq-VERT increases the probability of detecting a virus. Using this agnostic approach we identified Toscana virus and, for the first time in adults, rotavirus and Saffold virus, as potential causative agents in adult meningitis. Further work is needed to determine the prevalence of atypical viral candidates as well as the clinical impact of using sequencing methods in real time. This knowledge can help to reduce antimicrobial use and hospitalisations leading to both patient and health system benefits.


Asunto(s)
Meningitis Viral , Virus , Adulto , Líquido Cefalorraquídeo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Leucocitosis/líquido cefalorraquídeo , Meningitis Viral/diagnóstico , Virus/genética
13.
Sci Rep ; 11(1): 12384, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117323

RESUMEN

Inadequate sensitivity has been the primary limitation for implementing high-throughput sequencing for studies of tick-borne agents. Here we describe the development of TBDCapSeq, a sequencing assay that uses hybridization capture probes that cover the complete genomes of the eleven most common tick-borne agents found in the United States. The probes are used for solution-based capture and enrichment of pathogen nucleic acid followed by high-throughput sequencing. We evaluated the performance of TBDCapSeq to surveil samples that included human whole blood, mouse tissues, and field-collected ticks. For Borrelia burgdorferi and Babesia microti, the sensitivity of TBDCapSeq was comparable and occasionally exceeded the performance of agent-specific quantitative PCR and resulted in 25 to > 10,000-fold increase in pathogen reads when compared to standard unbiased sequencing. TBDCapSeq also enabled genome analyses directly within vertebrate and tick hosts. The implementation of TBDCapSeq could have major impact in studies of tick-borne pathogens by improving detection and facilitating genomic research that was previously unachievable with standard sequencing approaches.


Asunto(s)
Babesia microti/genética , Babesiosis/microbiología , Borrelia burgdorferi/genética , Técnicas de Genotipaje/métodos , Enfermedad de Lyme/microbiología , Técnicas de Diagnóstico Molecular/métodos , Análisis de Secuencia de ADN/métodos , Animales , Babesia microti/patogenicidad , Babesiosis/diagnóstico , Borrelia burgdorferi/patogenicidad , Genoma Bacteriano , Técnicas de Genotipaje/normas , Humanos , Enfermedad de Lyme/diagnóstico , Ratones , Técnicas de Diagnóstico Molecular/normas , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/normas , Garrapatas/microbiología
14.
Ticks Tick Borne Dis ; 12(4): 101730, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33957484

RESUMEN

Hunters are at a higher risk for exposure to zoonotic pathogens due to their close interactions with wildlife and arthropod vectors. In this study, high throughput sequencing was used to explore the viromes of two tick species, Amblyomma dissimile and Haemaphysalis juxtakochi, removed from hunted wildlife in Trinidad and Tobago. We identified sequences from 3 new viral species, from the viral families Orthomyxoviridae, Chuviridae and Tetraviridae in A. dissimile.


Asunto(s)
Ciervos , Iguanas , Ixodidae/virología , Infecciones por Orthomyxoviridae/veterinaria , Orthomyxoviridae/aislamiento & purificación , Animales , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología , Filogenia , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria , Trinidad y Tobago , Proteínas Virales/análisis
16.
Commun Biol ; 4(1): 225, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580175

RESUMEN

Serodiagnosis of SARS-CoV-2 infection is impeded by immunological cross-reactivity among the human coronaviruses (HCoVs): SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43, 229E, HKU1, and NL63. Here we report the identification of humoral immune responses to SARS-CoV-2 peptides that may enable discrimination between exposure to SARS-CoV-2 and other HCoVs. We used a high-density peptide microarray and plasma samples collected at two time points from 50 subjects with SARS-CoV-2 infection confirmed by qPCR, samples collected in 2004-2005 from 11 subjects with IgG antibodies to SARS-CoV-1, 11 subjects with IgG antibodies to other seasonal human coronaviruses (HCoV), and 10 healthy human subjects. Through statistical modeling with linear regression and multidimensional scaling we identified specific peptides that were reassembled to identify 29 linear SARS-CoV-2 epitopes that were immunoreactive with plasma from individuals who had asymptomatic, mild or severe SARS-CoV-2 infections. Larger studies will be required to determine whether these peptides may be useful in serodiagnostics.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Mapeo Peptídico , Péptidos/inmunología , SARS-CoV-2/fisiología , Secuencia de Aminoácidos , Animales , COVID-19/sangre , Quirópteros , Epítopos/inmunología , Humanos , Inmunoglobulina G/metabolismo , Péptidos/química , Proteoma/metabolismo
17.
J Med Entomol ; 58(4): 1525-1535, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33313662

RESUMEN

Within the past 30 yr molecular assays have largely supplanted classical methods for detection of tick-borne agents. Enhancements provided by molecular assays, including speed, throughput, sensitivity, and specificity, have resulted in a rapid increase in the number of newly characterized tick-borne agents. The use of unbiased high throughput sequencing has enabled the prompt identification of new pathogens and the examination of tick microbiomes. These efforts have led to the identification of hundreds of new tick-borne agents in the last decade alone. However, little is currently known about the majority of these agents beyond their phylogenetic classification. Our article outlines the primary methods involved in tick-borne agent discovery and the current status of our understanding of tick-borne agent diversity.


Asunto(s)
Vectores Arácnidos/microbiología , Garrapatas/microbiología , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , Viroma
18.
Ticks Tick Borne Dis ; 11(6): 101516, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32993936

RESUMEN

Haemaphysalis longicornis, the Asian longhorned tick, is an invasive tick species that has spread rapidly across the northeastern and southeastern regions of the United States in recent years. This invasive pest species, known to transmit several tick-borne pathogens in its native range, is a potential threat to wildlife, livestock, domestic animals, and humans. Questing larval (n = 25), nymph (n = 10), and adult (n = 123), along with host-derived adult (n = 25) H. longicornis ticks were collected from various locations on Staten Island, NY. The pathobiome of each specimen was examined using two different high throughput sequencing approaches, virus enrichment and shotgun metagenomics. An average of 45,828,061 total reads per sample were recovered from the virus enriched samples and an average of 11,381,144 total reads per sample were obtained using shotgun metagenomics. Aside from endogenous viral sequences, no viruses were identified through either approach. Through shotgun metagenomics, Coxiella-like bacteria, Legionella, Sphingomonas, and other bacterial species were recovered. The Coxiella-like agent was ubiquitous and present at high abundances in all samples, suggesting it may be an endosymbiont. The other bacterial agents are not known to be transmitted by ticks. From these analyses, H. longicornis do not appear to host any endemic human tick-borne pathogens in the New York City region.


Asunto(s)
Ixodidae/microbiología , Metagenoma , Microbiota , Viroma , Animales , Ixodidae/crecimiento & desarrollo , Ixodidae/virología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/virología , Metagenómica , Ciudad de Nueva York , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Ninfa/virología
19.
Parasit Vectors ; 13(1): 371, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709241

RESUMEN

BACKGROUND: Metagenomic studies have revealed the presence of a filarial nematode in Ixodes scapularis. The phylogeny of this agent, and its potential for human infection, are unknown. METHODS: We used existing metagenomic data from I. scapularis to determine the phylogeny of this tick-associated nematode and employed quantitative PCR to determine if the presence of this agent had an effect on the burden of Borrelia burgdorferi. We also developed a Luciferase Immunoprecipitation System assay using the Av33 antigen as a target to investigate the presence of antibodies against this nematode in 128 serum specimens from patients with Lyme disease and babesiosis. To demonstrate assay utility, we used 15 sera from patients with onchocerciasis as controls. RESULTS: We show that this agent is a new species in the genus Monanema and its presence in vector ticks does not impact the burden of B. burgdorferi. We did not detect IgG antibodies to this agent in 127 of 128 sera from patients with Lyme disease or babesiosis. One sample had reactivity above the threshold, but at the low-level equivalent to the least reactive onchocerciasis sera. This low positive signal could be a result of cross-reacting antibodies, antibodies from a previous infection with a filarial nematode, or, less likely, a exposure to the Ixodes scapularis-associated nematode. CONCLUSIONS: We found no evidence that this nematode contributes to the spectrum of human tick-borne infections.


Asunto(s)
Ixodes/parasitología , Nematodos , Enfermedades por Picaduras de Garrapatas/parasitología , Animales , Antígenos Helmínticos/sangre , Antígenos Helmínticos/inmunología , Coinfección , Genes de Helminto , Humanos , Ixodes/genética , Metagenoma , Nematodos/clasificación , Nematodos/genética , Nematodos/aislamiento & purificación , Filogenia , ARN Ribosómico/genética , Pruebas Serológicas/métodos
20.
Transplantation ; 104(2): 270-279, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31385931

RESUMEN

BACKGROUND: Cytomegalovirus (CMV) infection is a serious complication in immunosuppressed patients, specifically transplant recipients. Here, we describe the development and use of an assay to monitor the incidence and treatment of CMV viremia in a Cynomolgus macaque model of bone marrow transplantation (BMT) for tolerance induction. We address the correlation between the course of viremia and immune reconstitution. METHODS: Twenty-one animals received a nonmyeloablative conditioning regimen. Seven received cyclosporine A for 28 days and 14 received rapamycin. A CMV polymerase chain reaction assay was developed and run twice per week to monitor viremia. Nineteen recipients were CMV seropositive before BMT. Immune reconstitution was monitored through flow cytometry and CMV viremia was tracked via quantitative polymerase chain reaction. RESULTS: Recipients developed CMV viremia during the first month post-BMT. Two animals developed uncontrollable CMV disease. CMV reactivation occurred earlier in cyclosporine A-treated animals compared with those receiving rapamycin. Post-BMT, T-cell counts remained significantly lower compared with pretransplant levels until CMV reactivation, at which point they increased during the viremic phase and approached pretransplant levels 3 months post-BMT. Management of CMV required treatment before viremia reached 10 000 copies/mL; otherwise clinical symptoms were observed. High doses of ganciclovir resolved the viremia, which could subsequently be controlled with valganciclovir. CONCLUSIONS: We developed an assay to monitor CMV in Cynomolgus macaques. CMV reactivation occurred in 100% of seropositive animals in this model. Rapamycin delayed CMV reactivation and ganciclovir treatment was effective at high doses. As in humans, CD8 T cells proliferated during CMV viremia.


Asunto(s)
Trasplante de Médula Ósea/métodos , Infecciones por Citomegalovirus/terapia , Rechazo de Injerto/inmunología , Reconstitución Inmune/fisiología , Tolerancia Inmunológica , Sirolimus/farmacología , Activación Viral , Animales , Antifúngicos/farmacología , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Modelos Animales de Enfermedad , Rechazo de Injerto/prevención & control , Macaca fascicularis , Receptores de Trasplantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA