RESUMEN
Listeners can use prior knowledge to predict the content of noisy speech signals, enhancing perception. However, this process can also elicit misperceptions. For the first time, we employed a prime-probe paradigm and transcranial magnetic stimulation to investigate causal roles for the left and right posterior superior temporal gyri (pSTG) in the perception and misperception of degraded speech. Listeners were presented with spectrotemporally degraded probe sentences preceded by a clear prime. To produce misperceptions, we created partially mismatched pseudo-sentence probes via homophonic nonword transformations (e.g. The little girl was excited to lose her first tooth-Tha fittle girmn wam expited du roos har derst cooth). Compared to a control site (vertex), inhibitory stimulation of the left pSTG selectively disrupted priming of real but not pseudo-sentences. Conversely, inhibitory stimulation of the right pSTG enhanced priming of misperceptions with pseudo-sentences, but did not influence perception of real sentences. These results indicate qualitatively different causal roles for the left and right pSTG in perceiving degraded speech, supporting bilateral models that propose engagement of the right pSTG in sublexical processing.
Asunto(s)
Lenguaje , Habla , Humanos , Femenino , Habla/fisiología , Lóbulo Temporal , Estimulación Magnética Transcraneal , RuidoRESUMEN
Left-hemisphere intraparenchymal primary brain tumor patients are at risk of developing reading difficulties that may be stable, improve or deteriorate after surgery. Previous studies examining language organization in brain tumor patients have provided insights into neural plasticity supporting recovery. Only a single study, however, has examined the role of white matter tracts in preserving reading ability post-surgery and none have examined the functional reading network. The current study aimed to investigate the regional spontaneous brain activity associated with reading performance in a group of 36 adult patients 6-24 months following left-hemisphere tumor resection. Spontaneous brain activity was assessed using resting-state fMRI (rs-fMRI) regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF) metrics, which measure local functional connectivity and activity, respectively. ReHo in the left occipito-temporal and right superior parietal regions was negatively correlated with reading performance. fALFF in the putamen bilaterally and the left cerebellum was negatively correlated with reading performance, and positively correlated in the right superior parietal gyrus. These findings are broadly consistent with reading networks reported in healthy participants, indicating that reading ability following brain tumor surgery might not involve substantial functional re-organization.
Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas , Adulto , Humanos , Imagen por Resonancia Magnética , Encéfalo , Lóbulo Parietal , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patologíaRESUMEN
Surgical resection of brain tumours is associated with an increased risk of aphasia. However, relatively little is known about outcomes in the chronic phase (i.e., >6 months). Using voxel-based lesion symptom mapping (VLSM) in 46 patients, we investigated whether chronic language impairments are related to the location of surgical resection, residual tumour characteristics (e.g., peri-resection treatment effects, progressive infiltration, oedema) or both. Approximately 72% of patients scored below the cut-off for aphasia. Action naming and spoken sentence comprehension deficits were associated with lesions in the left anterior temporal and inferior parietal lobes, respectively. Voxel-wise analyses revealed significant associations between ventral language pathways and action naming deficits. Reading impairments were also associated with increasing disconnection of cerebellar pathways. The results indicate chronic post-surgical aphasias reflect a combination of resected tissue and tumour infiltration of language-related white matter tracts, implicating progressive disconnection as the critical mechanism of impairment.