Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Res Ther ; 16(1): 109, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750512

RESUMEN

BACKGROUND: As one major symptom of Alzheimer's disease (AD), anterograde amnesia describes patients with an inability in new memory formation. The crucial role of the entorhinal cortex in forming new memories has been well established, and the neuropeptide cholecystokinin (CCK) is reported to be released from the entorhinal cortex to enable neocortical associated memory and long-term potentiation. Though several studies reveal that the entorhinal cortex and CCK are related to AD, it is less well studied. It is unclear whether CCK is a good biomarker or further a great drug candidate for AD. METHODS: mRNA expressions of CCK and CCK-B receptor (CCKBR) were examined in two mouse models, 3xTg AD and CCK knock-out (CCK-/-) mice. Animals' cognition was investigated with Morris water maze, novel object recognition test and neuroplasticity with in-vitro electrophysiological recording. Drugs were given intraperitoneally to animals to investigate the rescue effects on cognitive deficits, or applied to brain slices directly to explore the influence in inducement of long-term potentiation. RESULTS: Aged 3xTg AD mice exhibited reduced CCK mRNA expression in the entorhinal cortex but reduced CCKBR expression in the neocortex and hippocampus, and impaired cognition and neuroplasticity comparable with CCK-/- mice. Importantly, the animals displayed improved performance and enhanced long-term potentiation after the treatment of CCKBR agonists. CONCLUSIONS: Here we provide more evidence to support the role of CCK in learning and memory and its potential to treat AD. We elaborated on the rescue effect of a promising novel drug, HT-267, on aged 3xTg AD mice. Although the physiological etiology of CCK in AD still needs to be further investigated, this study sheds light on a potential pharmaceutical candidate for AD and dementia.


Asunto(s)
Enfermedad de Alzheimer , Amnesia Anterógrada , Colecistoquinina , Ratones Transgénicos , Receptor de Colecistoquinina B , Animales , Ratones , Envejecimiento/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Amnesia Anterógrada/tratamiento farmacológico , Colecistoquinina/metabolismo , Modelos Animales de Enfermedad , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Colecistoquinina B/genética , Receptor de Colecistoquinina B/agonistas , Receptor de Colecistoquinina B/deficiencia
2.
Mol Cancer ; 23(1): 85, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678233

RESUMEN

Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.


Asunto(s)
Histona Desacetilasa 1 , Histona Desacetilasa 2 , Proto-Oncogenes Mas , Humanos , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Histonas/metabolismo , Animales
3.
J Med Chem ; 67(4): 2529-2548, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38331432

RESUMEN

Tuberculosis (TB) is the leading cause of global morbidity and mortality resulting from infectious disease, with over 10.6 million new cases and 1.4 million deaths in 2021. This global emergency is exacerbated by the emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB; therefore, new drugs and new drug targets are urgently required. From a whole cell phenotypic screen, a series of azetidines derivatives termed BGAz, which elicit potent bactericidal activity with MIC99 values <10 µM against drug-sensitive Mycobacterium tuberculosis and MDR-TB, were identified. These compounds demonstrate no detectable drug resistance. The mode of action and target deconvolution studies suggest that these compounds inhibit mycobacterial growth by interfering with cell envelope biogenesis, specifically late-stage mycolic acid biosynthesis. Transcriptomic analysis demonstrates that the BGAz compounds tested display a mode of action distinct from the existing mycobacterial cell wall inhibitors. In addition, the compounds tested exhibit toxicological and PK/PD profiles that pave the way for their development as antitubercular chemotherapies.


Asunto(s)
Azetidinas , Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Azetidinas/farmacología , Azetidinas/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
4.
Adv Sci (Weinh) ; 10(28): e2300989, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37552005

RESUMEN

Studies in recent years have highlighted an elaborate crosstalk between T cells and bone cells, suggesting that T cells may be alternative therapeutic targets for the maintenance of bone homeostasis. Here, it is reported that systemic administration of low-dose staphylococcal enterotoxin C2 (SEC2) 2M-118, a form of mutant superantigen, dramatically alleviates ovariectomy (OVX)-induced bone loss via modulating T cells. Specially, SEC2 2M-118 treatment increases trabecular bone mass significantly via promoting bone formation in OVX mice. These beneficial effects are largely diminished in T-cell-deficient nude mice and can be rescued by T-cell reconstruction. Neutralizing assays determine interferon gamma (IFN-γ) as the key factor that mediates the beneficial effects of SEC2 2M-118 on bone. Mechanistic studies demonstrate that IFN-γ stimulates Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, leading to enhanced production of nitric oxide, which further activates p38 mitogen-activated protein kinase (MAPK) and Runt-related transcription factor 2 (Runx2) signaling and promotes osteogenic differentiation. IFN-γ also directly inhibits osteoclast differentiation, but this effect is counteracted by proabsorptive factors tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) secreted from IFN-γ-stimulated macrophages. Taken together, this work provides clues for developing innovative approaches which target T cells for the prevention and treatment of osteoporosis.

5.
Bioact Mater ; 28: 255-272, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37303853

RESUMEN

Lacking self-repair abilities, injuries to articular cartilage can lead to cartilage degeneration and ultimately result in osteoarthritis. Tissue engineering based on functional bioactive scaffolds are emerging as promising approaches for articular cartilage regeneration and repair. Although the use of cell-laden scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Acellular approaches through the recruitment of endogenous cells offer great promise for in situ articular cartilage regeneration. In this study, we propose an endogenous stem cell recruitment strategy for cartilage repair. Based on an injectable, adhesive and self-healable o-alg-THAM/gel hydrogel system as scaffolds and a biophysio-enhanced bioactive microspheres engineered based on hBMSCs secretion during chondrogenic differentiation as bioactive supplement, the as proposed functional material effectively and specifically recruit endogenous stem cells for cartilage repair, providing new insights into in situ articular cartilage regeneration.

6.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983039

RESUMEN

Osteoporosis, a common systematic bone homeostasis disorder related disease, still urgently needs innovative treatment methods. Several natural small molecules were found to be effective therapeutics in osteoporosis. In the present study, quercetin was screened out from a library of natural small molecular compounds by a dual luciferase reporter system. Quercetin was found to upregulate Wnt/ß-catenin while inhibiting NF-κB signaling activities, and thereby rescuing osteoporosis-induced tumor necrosis factor alpha (TNFα) impaired BMSCs osteogenesis. Furthermore, a putative functional lncRNA, Malat1, was shown to be a key mediator in quercetin regulated signaling activities and TNFα-impaired BMSCs osteogenesis, as mentioned above. In an ovariectomy (OVX)-induced osteoporosis mouse model, quercetin administration could significantly rescue OVX-induced bone loss and structure deterioration. Serum levels of Malat1 were also obviously rescued in the OVX model after quercetin treatment. In conclusion, our study demonstrated that quercetin could rescue TNFα-impaired BMSCs osteogenesis in vitro and osteoporosis-induced bone loss in vivo, in a Malat1-dependent manner, suggesting that quercetin may serve as a therapeutic candidate for osteoporosis treatment.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , ARN Largo no Codificante , Ratones , Animales , Femenino , Humanos , Osteogénesis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/uso terapéutico , Factor de Necrosis Tumoral alfa/farmacología , Quercetina/farmacología , Quercetina/uso terapéutico , Médula Ósea/patología , Osteoporosis/etiología , Osteoporosis/genética , Ovariectomía/efectos adversos , Células Madre/patología , Diferenciación Celular , Vía de Señalización Wnt
7.
Biomed Pharmacother ; 154: 113608, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36037785

RESUMEN

Osteoarthritis (OA) is a degenerative disease associated with joint inflammation, articular cartilage degeneration and subchondral hypertrophy. Small molecules which both ameliorate chondrocyte OA phenotype and activate bone marrow-derived mesenchymal stem cells (BMSCs) chondrogenesis under inflammatory conditions have the therapeutical potential for OA treatment. In this study, we characterized a novel small molecule which could ameliorate OA progression via novel regulating mechanisms. Docosahexaenoic acid (DHA), a bioactive molecule, was screened from a small molecule library and showed anti-inflammatory and chondroprotective effects in OA chondrocytes, as well as ameliorated IL-1ß impaired BMSCs chondrogenesis in Wnt/ß-catenin and NF-κB signaling dependent manners. Furthermore, Malat1 was found to be the key mediator of DHA-mediating anti-inflammation chondroprotection and chondrogenesis. DHA also rescued cartilage loss and damage in a surgery-induced OA mice model. The elevation of serum Malat1 levels caused by OA was also downregulated by DHA treatment. Taken together, our findings demonstrated that DHA, with a dual-signaling repression property, exerted its anti-inflammation, chondroprotection and chondrogenesis function possibly via regulating Malat1 level, suggesting that it may be a possible drug candidate for OA patients with elevated MALAT1 expression levels.


Asunto(s)
Cartílago Articular , Osteoartritis , ARN Largo no Codificante , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Cartílago Articular/metabolismo , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Ratones , Osteoartritis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Nutrients ; 14(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35631249

RESUMEN

Osteoporotic fracture has been regarded as one of the most common bone disorders in the aging society. The natural herb-derived small molecules were revealed as potential treatment approaches for osteoporotic fracture healing. Sesamin is a member of lignan family, which possesses estrogenic activity and plays a significant role in modulating bone homeostasis. Our previous study reported the promoting effect of sesamin on postmenopausal osteoporosis treatment. However, the role of sesamin in osteoporotic fracture healing has not been well studied yet. In this study, we further investigated the putative treatment effect of sesamin on osteoporotic fracture healing. Our study indicated that sesamin could activate bone morphogenetic protein 2 (BMP2) signaling pathway and further promotes in vitro chondrogenesis and angiogenesis activities. This promoting effect was abolished by the treatment of ERα inhibitor. In the osteoporotic bone fracture model, we demonstrated that sesamin markedly improves the callus formation and increases the cartilaginous area at the early-stage, as well as narrowing the fracture gap, and expands callus volume at the late-stage fracture healing site of the OVX mice femur. Furthermore, the angiogenesis at the osteoporotic fracture site was also significantly improved by sesamin treatment. In conclusion, our research illustrated the therapeutic potential and underlying regulation mechanisms of sesamin on osteoporotic fracture healing. Our studies shed light on developing herb-derived bioactive compounds as novel drugs for the treatment of osteoporotic fracture healing, especially for postmenopausal women with low estrogen level.


Asunto(s)
Lignanos , Fracturas Osteoporóticas , Animales , Condrogénesis , Dioxoles , Femenino , Curación de Fractura , Humanos , Lignanos/farmacología , Ratones , Fracturas Osteoporóticas/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
9.
Nutrients ; 13(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960006

RESUMEN

As one of the leading causes of bone fracture in postmenopausal women and in older men, osteoporosis worldwide is attracting more attention in recent decades. Osteoporosis is a common disease mainly resulting from an imbalance of bone formation and bone resorption. Pharmaceutically active compounds that both activate osteogenesis, while repressing osteoclastogenesis hold the potential of being therapeutic medications for osteoporosis treatment. In the present study, sesamin, a bioactive ingredient derived from the seed of Sesamum Indicum, was screened out from a bioactive compound library and shown to exhibit dual-regulating functions on these two processes. Sesamin was demonstrated to promote osteogenesis by upregulating Wnt/ß-catenin, while repressing osteoclastogenesis via downregulating NF-κB signaling . Furthermore, DANCR was found to be the key regulator in sesamin-mediated bone formation and resorption . In an ovariectomy (OVX)-induced osteoporotic mouse model, sesamin could rescue OVX-induced bone loss and impairment. The increased serum level of DANCR caused by OVX was also downregulated upon sesamin treatment. In conclusion, our results demonstrate that sesamin plays a dual-functional role in both osteogenesis activation and osteoclastogenesis de-activation in a DANCR-dependent manner, suggesting that it may be a possible medication candidate for osteoporotic patients with elevated DNACR expression levels.


Asunto(s)
Dioxoles/farmacología , Lignanos/farmacología , Osteogénesis/efectos de los fármacos , Osteoporosis Posmenopáusica/tratamiento farmacológico , ARN Largo no Codificante/metabolismo , Animales , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis Posmenopáusica/metabolismo , Ligando RANK/metabolismo , Células RAW 264.7 , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
10.
Clin Exp Rheumatol ; 37 Suppl 120(5): 130-134, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31621572

RESUMEN

From the time of their discovery in 1999, the aggrecanases, and ADAMTS-5 in particular, have been heavily investigated as targets for disease-modifying osteoarthritis drug (DMOAD) development. Here, we provide a brief narrative review of the discovery efforts to target these enzymes, and how this led to the current ongoing programmes that hold promise for the future. We discuss a comparison of inhibition of collagen breakdown versus inhibition of aggrecan breakdown. We then summarise existing programmes that target ADAMTS-5, including small molecule inhibitors, monoclonal neutralising antibodies and nanobodies, and gene editing technologies. We also briefly discuss the potential analgesic effects this strategy may offer in addition to its joint-protective effects.


Asunto(s)
Proteínas ADAM , Endopeptidasas/metabolismo , Osteoartritis/enzimología , Procolágeno N-Endopeptidasa , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/inmunología , Proteína ADAMTS4 , Agrecanos/metabolismo , Humanos , Osteoartritis/tratamiento farmacológico , Osteoartritis/inmunología
11.
ACS Med Chem Lett ; 10(6): 966-971, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31223456

RESUMEN

Malaria is caused by infection from the Plasmodium parasite and kills hundreds of thousands of people every year. Emergence of new drug resistant strains of Plasmodium demands identification of new drugs with novel chemotypes and mechanisms of action. As a follow up to our evaluation of 4-aryl-N-benzylpyrrolidine-3-carboxamides as novel pyrrolidine-based antimalarial agents, we describe herein the structure-activity relationships of the reversed amide homologues 2-aryl-N-(4-arylpyrrolidin-3-yl)acetamides. Unlike their carboxamide homologues, acetamide pyrrolidines do not require a third chiral center to be potent inhibitors of P. falciparum and have good pharmacokinetic properties and improved oral efficacy in a mouse model of malaria. Compound (-)-32a (CWHM-1552) has an in vitro IC50 of 51 nM in the P. falciparum 3D7 assay and an in vivo ED90 of <10 mg/kg/day and ED99 of 30 mg/kg/day in a murine P. chabaudi model. Remarkably, the absolute stereochemical preference for this acetamide series (3S,4R) is opposite of that determined for the homologous carboxamide series. Lead compounds for this class have modest affinities for the hERG channel and inhibit CYP 3A4. Additional optimization is needed in order to eliminate these undesired properties from this otherwise promising series of antimalarial compounds.

13.
Nat Commun ; 10(1): 1817, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000720

RESUMEN

Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease manifest with the neuronal accumulation of toxic proteins. Since autophagy upregulation enhances the clearance of such proteins and ameliorates their toxicities in animal models, we and others have sought to re-position/re-profile existing compounds used in humans to identify those that may induce autophagy in the brain. A key challenge with this approach is to assess if any hits identified can induce neuronal autophagy at concentrations that would be seen in humans taking the drug for its conventional indication. Here we report that felodipine, an L-type calcium channel blocker and anti-hypertensive drug, induces autophagy and clears diverse aggregate-prone, neurodegenerative disease-associated proteins. Felodipine can clear mutant α-synuclein in mouse brains at plasma concentrations similar to those that would be seen in humans taking the drug. This is associated with neuroprotection in mice, suggesting the promise of this compound for use in neurodegeneration.


Asunto(s)
Autofagia/efectos de los fármacos , Reposicionamiento de Medicamentos , Felodipino/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Animales , Animales Modificados Genéticamente , Línea Celular , Corteza Cerebral/citología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Embrión no Mamífero , Felodipino/uso terapéutico , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Cultivo Primario de Células , Porcinos , Porcinos Enanos , Resultado del Tratamiento , Pez Cebra , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
J Med Chem ; 62(7): 3503-3512, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30856324

RESUMEN

Identification of novel chemotypes with antimalarial efficacy is imperative to combat the rise of Plasmodium species resistant to current antimalarial drugs. We have used a hybrid target-phenotype approach to identify and evaluate novel chemotypes for malaria. In our search for drug-like aspartic protease inhibitors in publicly available phenotypic antimalarial databases, we identified GNF-Pf-4691, a 4-aryl- N-benzylpyrrolidine-3-carboxamide, as having a structure reminiscent of known inhibitors of aspartic proteases. Extensive profiling of the two terminal aryl rings revealed a structure-activity relationship in which relatively few substituents are tolerated at the benzylic position, but the 3-aryl position tolerates a range of hydrophobic groups and some heterocycles. Out of this effort, we identified (+)-54b (CWHM-1008) as a lead compound. 54b has EC50 values of 46 and 21 nM against drug-sensitive Plasmodium falciparum 3D7 and drug-resistant Dd2 strains, respectively. Furthermore, 54b has a long half-life in mice (4.4 h) and is orally efficacious in a mouse model of malaria (qd; ED99 ∼ 30 mg/kg/day). Thus, the 4-aryl- N-benzylpyrrolidine-3-carboxamide chemotype is a promising novel chemotype for malaria drug discovery.


Asunto(s)
Antimaláricos/farmacología , Pirrolidinas/farmacología , Administración Oral , Animales , Antimaláricos/administración & dosificación , Antimaláricos/química , Disponibilidad Biológica , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Malaria/tratamiento farmacológico , Ratones , Microsomas Hepáticos/efectos de los fármacos , Pirrolidinas/administración & dosificación , Pirrolidinas/química , Relación Estructura-Actividad
15.
Nat Cell Biol ; 20(10): 1227, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29907862

RESUMEN

In the version of this Article originally published, in Fig. 2c, the '+' sign and 'OSKM' were superimposed in the label '+OSKM'. In Fig. 4e, in the labels, all instances of 'Ant' should have been 'Anti-'. And, in Fig. 7a, the label '0.0' was misplaced; it should have been on the colour scale bar. These figures have now been corrected in the online versions.

16.
Nat Cell Biol ; 20(4): 400-412, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29531310

RESUMEN

Somatic cell reprogramming by exogenous factors requires cooperation with transcriptional co-activators and co-repressors to effectively remodel the epigenetic environment. How this interplay is regulated remains poorly understood. Here, we demonstrate that NCoR/SMRT co-repressors bind to pluripotency loci to create a barrier to reprogramming with the four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC), and consequently, suppressing NCoR/SMRT significantly enhances reprogramming efficiency and kinetics. The core epigenetic subunit of the NCoR/SMRT complex, histone deacetylase 3 (HDAC3), contributes to the effects of NCoR/SMRT by inducing histone deacetylation at pluripotency loci. Among the Yamanaka factors, recruitment of NCoR/SMRT-HDAC3 to genomic loci is mostly facilitated by c-MYC. Hence, we describe how c-MYC is beneficial for the early phase of reprogramming but deleterious later. Overall, we uncover a role for NCoR/SMRT co-repressors in reprogramming and propose a dual function for c-MYC in this process.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Células Madre Embrionarias de Ratones/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilación , Animales , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos ICR , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Tiempo
17.
J Med Chem ; 60(10): 4135-4146, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28475316

RESUMEN

In this report, we disclose the design and synthesis of a series of pentafluorosulfanyl (SF5) benzopyran derivatives as novel COX-2 inhibitors with improved pharmacokinetic and pharmacodynamic properties. The pentafluorosulfanyl compounds showed both potency and selectivity for COX-2 and demonstrated efficacy in several murine models of inflammation and pain. More interestingly, one of the compounds, R,S-3a, revealed exceptional efficacy in the adjuvant induced arthritis (AIA) model, achieving an ED50 as low as 0.094 mg/kg. In addition, the pharmacokinetics of compound R,S-3a in rat revealed a half-life in excess of 12 h and plasma drug concentrations well above its IC90 for up to 40 h. When R,S-3a was dosed just two times a week in the AIA model, efficacy was still maintained. Overall, drug R,S-3a and other analogues are suitable candidates that merit further investigation for the treatment of inflammation and pain as well as other diseases where COX-2 and PGE2 play a role in their etiology.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Benzopiranos/química , Benzopiranos/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Inflamación/tratamiento farmacológico , Animales , Antiinflamatorios/sangre , Antiinflamatorios/farmacología , Artritis Experimental/enzimología , Benzopiranos/sangre , Benzopiranos/farmacología , Inhibidores de la Ciclooxigenasa 2/sangre , Inhibidores de la Ciclooxigenasa 2/farmacología , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/enzimología , Inflamación/enzimología , Masculino , Ratones , Modelos Moleculares , Ratas Endogámicas Lew , Ratas Sprague-Dawley
18.
Mini Rev Med Chem ; 16(16): 1284-1289, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27156517

RESUMEN

Coxibs are a class of powerful drugs used by millions of people worldwide to treat a wide variety of ailments such as muscular skeletal pain and inflammation. The primary mechanism of action of coxibs is the potent inhibition of the COX-2 enzyme. Unfortunately, their use is limited to patients due to a variety of factors including poor solubility, negative effects on renal clearance and increased risk of cardiovascular pathology. However, because of their effectiveness in blocking PGE2 mediated inflammation, a key pathway that drives many diseases, there is a clear unmet medical need to develop new COX-2 inhibitors that are free of the aforementioned problems. The purpose of this prospectus is to define the specific properties that are desired in 3rd generation coxibs as a starting point for the development of new and better drugs.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/química , Humanos
19.
ACS Med Chem Lett ; 6(10): 1086-90, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26487917

RESUMEN

A series of novel anticancer agents were designed and synthesized based on coupling of different nonsteroidal anti-inflammatory drugs (NSAIDs) with the epidermal growth-factor receptor (EGFR) tyrosine kinase inhibitor, erlotinib. Both the antiproliferative and pharmacokinetic activity of the target compounds were evaluated using HCC827 and A431 tumor cell lines. Among the derivatives made, compounds 10a, 10c, and 21g showed superb potency, comparable to that of erlotinib. Furthermore, preliminary SAR analysis showed that when the NSAIDs were conjugated via linkage to C-6 OH versus linkage to C-7 OH of the quinazoline nucleus, superior anticancer activity was achieved. Finally, the in vitro pharmacokinetic profile of several conjugates demonstrated the desired dissociation kinetics as the coupled molecules were effectively hydrolyzed, releasing both erlotinib and the specific NSAID in a time-dependent manner. The conjugation strategy represents a unique and simplified approach toward combination therapy, particularly for the treatment of cancers where both EGFR overexpression and inflammation play a direct role in disease progression.

20.
Bioorg Med Chem ; 23(16): 5144-50, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25797165

RESUMEN

Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease ß-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 µM and 0.099 µM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Hidantoínas/química , Hidantoínas/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Descubrimiento de Drogas , Humanos , Hidantoínas/metabolismo , Hidantoínas/farmacocinética , Malaria Falciparum/parasitología , Ratones , Microsomas Hepáticos/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacocinética , Piperidinas/farmacología , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Ratas , Compuestos de Espiro/química , Compuestos de Espiro/metabolismo , Compuestos de Espiro/farmacocinética , Compuestos de Espiro/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA