Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101679

RESUMEN

Future changes in climate, together with rising atmospheric CO 2 ${\text{CO}}_{2}$ , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity, CO 2 ${\text{CO}}_{2}$ and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.

3.
Ecology ; 103(10): e3779, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35657139

RESUMEN

It is well known that species interactions between exotic and native species are important for determining the success of biological invasions and how influential exotic species become in invaded communities. The strength and type of interactions between species can substantially vary, however, from negative and detrimental to minimal or even positive. Increasing evidence from the literature shows that exotic species have positive interactions with native species more often than originally thought. Gaps in our theory for how population growth is limited when interactions are positive, however, restrict our understanding of the mechanisms by which exotic "facilitators" contribute to diversity maintenance in invaded systems. Here, we quantified interactions between seven native and four exotic (established nonnative) common annual plant species in the highly diverse, York Gum woodlands of Western Australia. We used a Bayesian demographic modeling approach that allowed for interaction coefficients to be positive or negative, and explored key sources of variation in species responses to native and exotic neighbors at per capita (individual) and neighborhood levels. We observed positive per capita effects from exotic neighbors on exotic focal species as well as on several native focal species. However, all focal species were, on average, inhibited by their interaction neighborhood, when the variance in identity and abundance of observed neighbors was considered. At the neighborhood scale, exotic species were found to suppress all focal species, particularly those with high intrinsic fecundity. Our study demonstrates that within-neighborhood heterogeneity can regulate per capita positive effects of invaders, limiting runaway population growth of both natives and exotic invaders.


Asunto(s)
Ecosistema , Plantas , Teorema de Bayes , Bosques , Especies Introducidas , Australia Occidental
4.
Ecol Lett ; 25(7): 1618-1628, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35633300

RESUMEN

Natural systems contain more complexity than is accounted for in models of modern coexistence theory. Coexistence modelling often disregards variation arising from stochasticity in biological processes, heterogeneity among individuals and plasticity in trait values. However, these unaccounted-for sources of uncertainty are likely to be ecologically important and have the potential to impact estimates of coexistence. We applied a Bayesian modelling framework to data from an annual plant community in Western Australia to propagate uncertainty in coexistence outcomes using the invasion criterion and ratio of niche to fitness differences. We found accounting for this uncertainty altered predictions of coexistence versus competitive exclusion for 3 out of 14 species pairs and yielded a probability of priority effects for an additional species pair. The propagation of uncertainty arising from sources of biological complexity improves our ability to predict coexistence more accurately in natural systems.


Asunto(s)
Ecosistema , Modelos Biológicos , Teorema de Bayes , Demografía , Humanos , Plantas , Incertidumbre
5.
Oecologia ; 198(4): 865-875, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34999943

RESUMEN

Environmentally cued germination may play an important role in promoting coexistence in Mediterranean annual plant systems if it causes niche differentiation across heterogeneous microsite conditions. In this study, we tested how microsite conditions experienced by seeds in the field and light conditions in the laboratory influenced germination in 12 common annual plant species occurring in the understorey of the York gum-jam woodlands in southwest Western Australia. Specifically, we hypothesized that if germination promotes spatial niche differentiation, then we should observe species-specific germination responses to light. In addition, we hypothesized that species' laboratory germination response may depend on the microsite conditions experienced by seeds while buried. We tested the laboratory germination response of seeds under diurnally fluctuating light and complete darkness, which were collected from microsites spanning local-scale environmental gradients known to influence community structure in this system. We found that seeds of 6 out of the 12 focal species exhibited significant positive germination responses to light, but that the magnitude of these responses varied greatly with the relative light requirement for germination ranging from 0.51 to 0.86 for these species. In addition, germination increased significantly across a gradient of canopy cover for two species, but we found little evidence to suggest that species' relative light requirement for germination varied depending on seed bank microsite conditions. Our results suggest that variability in light availability may promote coexistence in this system and that the microsite conditions seeds experience in the intra-growing season period can further nuance species germination behaviour.


Asunto(s)
Germinación , Semillas , Australia , Germinación/fisiología , Luz , Latencia en las Plantas/fisiología , Estaciones del Año , Semillas/fisiología , Temperatura
6.
Ecology ; 101(12): e03185, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32885432

RESUMEN

Coexistence in spatially varying environments is theorized to be promoted by a variety of mechanisms including the spatial storage effect. The spatial storage effect promotes coexistence when (1) species have unique vital rate responses to their spatial environment and, when abundant, (2) experience stronger competition in the environmental patches where they perform better. In a naturally occurring southwest Western Australian annual plant system, we conducted a neighbor removal experiment involving eleven focal species growing in high-abundance populations. Specifically, we measured species' fecundity across a variety of environmental gradients in both the presence and absence of neighbors. For the environmental variables that we measured, there was only limited evidence for species-specific responses to the environment, with a composite variable describing overstory cover and leaf litter cover being the best predictor of fecundity for a subset of focal species. In addition, although we found strong evidence for intraspecific competition, positive environment-competition covariance was only detected for one species. Thus, positive environment-competition covariance may not be as common as expected in populations of species growing at high abundance, at least when tested in natural assemblages. Our findings highlight the inherent limitations of using natural assemblages to study spatial coexistence mechanisms, and we urge empirical ecologists to take these limitations into account when designing future experiments.


Asunto(s)
Ecosistema , Plantas , Australia , Dinámica Poblacional , Especificidad de la Especie
7.
Proc Biol Sci ; 285(1886)2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185637

RESUMEN

Native and exotic species richness is expected to be negatively related at small spatial scales where individuals interact, and positive at larger spatial scales as a greater variety of habitats are sampled. However, a range of native-exotic richness relationships (NERRs) have been reported, including positive at small scales and negative at larger scales. We present a hierarchical metacommunity framework to explain how contrasting NERRs may emerge across scales and study systems, and then apply this framework to NERRs in an invaded winter annual plant system in southwest Western Australia. We analysed NERRs at increasing spatial scales from neighbourhoods (0.09 m2) to communities (225 m2) to metacommunities (greater than 10 ha) within a multilevel structural equation model. In contrast to many previous studies, native and exotic richness were positively related at the neighbourhood scale and were not significantly associated at larger scales. Heterogeneity in soil surface properties was weakly, but positively, associated with native and exotic richness at the community scale. Metacommunity exotic richness increased strongly with regional temperature and moisture availability, but relationships for native richness were negative and much weaker. Thus, we show that neutral NERRs can emerge at larger scales owing to differential climatic filtering of native and exotic species pools.


Asunto(s)
Biota , Clima , Magnoliopsida/fisiología , Dispersión de las Plantas , Biodiversidad , Ecosistema , Especies Introducidas , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA