Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genetics ; 226(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37950911

RESUMEN

Chromosome segregation is crucial for the faithful inheritance of DNA to the daughter cells after DNA replication. For this, the kinetochore, a megadalton protein complex, assembles on centromeric chromatin containing the histone H3 variant CENP-A, and provides a physical connection to the microtubules. Here, we report an unanticipated role for enzymes required for ß-1,6- and ß-1,3-glucan biosynthesis in regulating kinetochore function in Saccharomyces cerevisiae. These carbohydrates are the major constituents of the yeast cell wall. We found that the deletion of KRE6, which encodes a glycosylhydrolase/ transglycosidase required for ß-1,6-glucan synthesis, suppressed the centromeric defect of mutations in components of the kinetochore, foremost the NDC80 components Spc24, Spc25, the MIND component Nsl1, and Okp1, a constitutive centromere-associated network protein. Similarly, the absence of Fks1, a ß-1,3-glucan synthase, and Kre11/Trs65, a TRAPPII component, suppressed a mutation in SPC25. Genetic analysis indicates that the reduction of intracellular ß-1,6- and ß-1,3-glucans, rather than the cell wall glucan content, regulates kinetochore function. Furthermore, we found a physical interaction between Kre6 and CENP-A/Cse4 in yeast, suggesting a potential function for Kre6 in glycosylating CENP-A/Cse4 or another kinetochore protein. This work shows a moonlighting function for selected cell wall synthesis proteins in regulating kinetochore assembly, which may provide a mechanism to connect the nutritional status of the cell to cell-cycle progression and chromosome segregation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , beta-Glucanos , Saccharomyces cerevisiae/genética , Cinetocoros/metabolismo , Proteína A Centromérica/genética , Glucanos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Centrómero/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética
2.
Genetics ; 223(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36810679

RESUMEN

Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80, and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 methylation and Cse4-K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cinetocoros/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Lisina/genética , Histonas/metabolismo , Metilación , Nucleosomas/genética , Arginina/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Nucleares/genética
3.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30389668

RESUMEN

Kinetochores are supramolecular assemblies that link centromeres to microtubules for sister chromatid segregation in mitosis. For this, the inner kinetochore CCAN/Ctf19 complex binds to centromeric chromatin containing the histone variant CENP-A, but whether the interaction of kinetochore components to centromeric nucleosomes is regulated by posttranslational modifications is unknown. Here, we investigated how methylation of arginine 37 (R37Me) and acetylation of lysine 49 (K49Ac) on the CENP-A homolog Cse4 from Saccharomyces cerevisiae regulate molecular interactions at the inner kinetochore. Importantly, we found that the Cse4 N-terminus binds with high affinity to the Ctf19 complex subassembly Okp1/Ame1 (CENP-Q/CENP-U in higher eukaryotes), and that this interaction is inhibited by R37Me and K49Ac modification on Cse4. In vivo defects in cse4-R37A were suppressed by mutations in OKP1 and AME1, and biochemical analysis of a mutant version of Okp1 showed increased affinity for Cse4. Altogether, our results demonstrate that the Okp1/Ame1 heterodimer is a reader module for posttranslational modifications on Cse4, thereby targeting the yeast CCAN complex to centromeric chromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Cinetocoros/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Proteína A Centromérica/química , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/química , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense , Organismos Modificados Genéticamente , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 287(47): 40083-90, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027869

RESUMEN

Rhodopsins are light-activated chromoproteins that mediate signaling processes via transducer proteins or promote active or passive ion transport as ion pumps or directly light-activated channels. Here, we provide spectroscopic characterization of a rhodopsin from the Chlamydomonas eyespot. It belongs to a recently discovered but so far uncharacterized family of histidine kinase rhodopsins (HKRs). These are modular proteins consisting of rhodopsin, a histidine kinase, a response regulator, and in some cases an effector domain such as an adenylyl or guanylyl cyclase, all encoded in a single protein as a two-component system. The recombinant rhodopsin fragment, Rh, of HKR1 is a UVA receptor (λ(max) = 380 nm) that is photoconverted by UV light into a stable blue light-absorbing meta state Rh-Bl (λ(max) = 490 nm). Rh-Bl is converted back to Rh-UV by blue light. Raman spectroscopy revealed that the Rh-UV chromophore is in an unusual 13-cis,15-anti configuration, which explains why the chromophore is deprotonated. The excited state lifetime of Rh-UV is exceptionally stable, probably caused by a relatively unpolar retinal binding pocket, converting into the photoproduct within about 100 ps, whereas the blue form reacts 100 times faster. We propose that the photochromic HKR1 plays a role in the adaptation of behavioral responses in the presence of UVA light.


Asunto(s)
Adaptación Fisiológica/fisiología , Chlamydomonas reinhardtii/enzimología , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Rodopsina/metabolismo , Rayos Ultravioleta , Adaptación Fisiológica/efectos de la radiación , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Sitios de Unión , Chlamydomonas reinhardtii/genética , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Histidina Quinasa , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Rodopsina/química , Rodopsina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA