Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 39(7): 1334-1342, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32408378

RESUMEN

Field-based atrazine sampling rates (Rs ) obtained by the polar organic chemical integrative sampler (POCIS) method were measured in 9 headwater streams over 3 yr covering 5 to 6 exposure periods of 2 to 3 wk/site/yr. Rates were best in line with the model Rs = 148 mL/d, with a standard deviation of 0.17 log units (factor 1.5). The POCIS canisters reduced mass transfer coefficients of the water boundary layer by a factor of 2 as measured by alabaster dissolution rates. A mechanistic model that accounts for flow and temperature effects yielded a fair estimate of the effective exchange surface area (12.5 ± 0.8 cm2 ). This model could only be tested for higher flow velocities because of uncertainties associated with the measurement of flow velocities <1 cm/s. Pictures of sorbent distributions in POCIS devices showed that the effective exchange surface area varied with time during the exposures. Error analysis indicated that sorbent distributions and chemical analysis were minor error sources. Our main conclusion is that an atrazine sampling rate of 148 mL/d yielded consistent results for all 3 yr across 9 headwater streams. Environ Toxicol Chem 2020;39:1334-1342. © 2020 SETAC.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Ríos/química , Atrazina/análisis , Calibración , Modelos Teóricos , Temperatura , Contaminantes Químicos del Agua/análisis
2.
Environ Toxicol Chem ; 35(2): 340-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26235307

RESUMEN

Washoff of 17 pyrethroid products resulting from a 1-h, 25.4-mm rainfall occurring 24 h after application was measured in indoor studies with concrete slabs. These products included different pyrethroid active ingredients and a range of formulation types. Based on this replicated study, 5 product pairs with contrasting washoff behaviors were chosen for an outdoor study using 6 full-scale house fronts in central California. Products in 4 of these pairs were applied once to different rectangular areas on the driveway (1 product in each pair to 3 house lots and the other to the remaining 3 house lots). The products in the fifth pair were applied 3 times at 2-mo intervals to vertical stucco walls above the driveway. All house lots received natural and simulated rainfall over 7 mo. Indoor studies showed differences up to 170-fold between paired products, whereas the maximum difference between paired products in the field was only 5-fold. In the pair applied to the wall, 1 product had 91 times the washoff of the other in the indoor study, whereas in the field the same product had 15% lower washoff. These results show that, although the formulation may influence washoff under actual use conditions, its influence is complex and not always as predicted by indoor experiments. Because the formulation also affects insect control, washoff research needs to be conducted together with efficacy testing.


Asunto(s)
Insecticidas/análisis , Piretrinas/análisis , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , California , Química Farmacéutica , Vivienda , Control de Insectos , Lluvia
3.
Environ Toxicol Chem ; 33(2): 302-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24130058

RESUMEN

The use of pesticides by homeowners or pest-control operators in urban settings is common, yet contributions of washoff from these materials are not easily understood. In the present study, cypermethrin, formulated as Cynoff EC (emulsifiable concentrate) and Cynoff WP (wettable powder) insecticides, was applied at typical rates to 10 different building material surfaces to examine its washoff potential from each surface. Using an indoor rainfall simulator, a 1-h rainfall event was generated and washoff samples were collected from 3 replicates of each surface type. Washoff was analyzed for cypermethrin using gas chromatography-negative chemical ionization mass spectrometry. An analysis of variance for a split-plot design was performed. Many building materials had similar water runoff masses, but asphalt resulted in significantly reduced average water runoff masses (73% less). The Cynoff WP formulation generally produced greater cypermethrin washoff than the Cynoff EC formulation. In addition, results for both the WP and EC formulations indicated that smoother surfaces such as vinyl and aluminum siding had higher washoff (1.0-14.1% mean percentage of applied mass). Cypermethrin washoff from rough absorptive surfaces like concrete and stucco was lower and ranged from 0.1 to 1.3% and from 0 to 0.2%, respectively, mean percentage of applied mass. Both building material surface and formulation play a significant role in cypermethrin washoff.


Asunto(s)
Materiales de Construcción , Insecticidas/análisis , Piretrinas/análisis , Insecticidas/química , Piretrinas/química , Lluvia , Propiedades de Superficie
4.
J Environ Qual ; 33(3): 984-93, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15224935

RESUMEN

Understanding microbial pathogen transport patterns in overland flow is important for developing best management practices for limiting microbial transport to water resources. Knowledge about the effectiveness of vegetative filter strips (VFS) to reduce pathogen transport from livestock confinement areas is limited. In this study, overland and near-surface transport of Cryptosporidium parvum has been investigated. Effects of land slopes, vegetation, and rainfall intensities on oocyst transport were examined using a tilting soil chamber with two compartments, one with bare ground and the other with brome (Bromus inermis Leyss.) vegetation. Three slope conditions (1.5, 3.0, and 4.5%) were used in conjunction with two rainfall intensities (25.4 and 63.5 mm/h) for 44 min using a rainfall simulator. The vegetative surface was very effective in reducing C. parvum in surface runoff. For the 25.4 mm/h rainfall, the total percent recovery of oocysts in overland flow from the VFS varied from 0.6 to 1.7%, while those from the bare ground condition varied from 4.4 to 14.5%. For the 63.5 mm/h rainfall, the recovery percentages of oocysts varied from 0.8 to 27.2% from the VFS, and 5.3 to 59% from bare-ground conditions. For all slopes and rainfall intensities, the total (combining both surface and near-surface) recovery of C. parvum oocysts was considerably less from the vegetated surface than those from the bare-ground conditions. These results indicate that the VFS can be a best management practice for controlling C. parvum in runoff from animal production facilities.


Asunto(s)
Agricultura , Cryptosporidium parvum , Movimientos del Agua , Crianza de Animales Domésticos , Animales , Animales Domésticos , Bromus/crecimiento & desarrollo , Monitoreo del Ambiente , Oocistos , Plantas , Lluvia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA