Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Spine ; 4: 102796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698806

RESUMEN

Introduction: Intraoperative Neurophysiological Monitoring (IOM) is widely used in neurosurgery but specific guidelines are lacking. Therefore, we can assume differences in IOM application between Neurosurgical centers. Research question: The section of Functional Neurosurgery of the Italian Society of Neurosurgery realized a survey aiming to obtain general data on the current practice of IOM in Italy. Materials and methods: A 22-item questionnaire was designed focusing on: volume procedures, indications, awake surgery, experience, organization and equipe. The questionnaire has been sent to Italian Neurosurgery centers. Results: A total of 54 centers completed the survey. The annual volume of surgeries range from 300 to 2000, and IOM is used in 10-20% of the procedures. In 46% of the cases is a neurologist or a neurophysiologist who performs IOM. For supra-tentorial pathology, almost all perform MEPs (94%) SSEPs (89%), direct cortical stimulation (85%). All centers perform IOM in spinal surgery and 95% in posterior fossa surgery. Among the 50% that perform peripheral nerve surgery, all use IOM. Awake surgery is performed by 70% of centers. The neurosurgeon is the only responsible for IOM in 35% of centers. In 83% of cases IOM implementation is adequate to the request. Discussion and conclusions: The Italian Neurosurgical centers perform IOM with high level of specialization, but differences exist in organization, techniques, and expertise. Our survey provides a snapshot of the state of the art in Italy and it could be a starting point to implement a consensus on the practice of IOM.

2.
J Pers Med ; 14(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38793120

RESUMEN

BACKGROUND: Recurrence in glioblastoma lacks a standardized treatment, prompting an exploration of re-irradiation's efficacy. METHODS: A comprehensive systematic review from January 2005 to May 2023 assessed the role of MRI sequences in recurrent glioblastoma re-irradiation. The search criteria, employing MeSH terms, targeted English-language, peer-reviewed articles. The inclusion criteria comprised both retrospective and prospective studies, excluding certain types and populations for specificity. The PICO methodology guided data extraction, and the statistical analysis employed Chi-squared tests via MedCalc v22.009. RESULTS: Out of the 355 identified studies, 81 met the criteria, involving 3280 patients across 65 retrospective and 16 prospective studies. The key findings indicate diverse treatment modalities, with linac-based photons predominating. The median age at re-irradiation was 54 years, and the median time interval between radiation courses was 15.5 months. Contrast-enhanced T1-weighted sequences were favored for target delineation, with PET-imaging used in fewer studies. Re-irradiation was generally well tolerated (median G3 adverse events: 3.5%). The clinical outcomes varied, with a median 1-year local control rate of 61% and a median overall survival of 11 months. No significant differences were noted in the G3 toxicity and clinical outcomes based on the MRI sequence preference or PET-based delineation. CONCLUSIONS: In the setting of recurrent glioblastoma, contrast-enhanced T1-weighted sequences were preferred for target delineation, allowing clinicians to deliver a safe and effective therapeutic option; amino acid PET imaging may represent a useful device to discriminate radionecrosis from recurrent disease. Future investigations, including the ongoing GLIAA, NOA-10, ARO 2013/1 trial, will aim to refine approaches and standardize methodologies for improved outcomes in recurrent glioblastoma re-irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA