Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 25(18): 17957-17966, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29680892

RESUMEN

A mixed cyanobacterial-mixotrophic algal population, dominated by the filamentous cyanobacterium Leptolyngbya sp. and the microalga Ochromonas (which contributed to the total photosynthetic population with rates of less than 5%), was studied under non-aseptic conditions for its efficiency to remove organic and inorganic compounds from different types of wastes/wastewaters while simultaneously producing lipids. Second cheese whey, poplar sawdust, and grass hydrolysates were used in lab-scale experiments, in photobioreactors that operated under aerobic conditions with different initial nutrient (C, N and P) concentrations. Nutrient removal rates, biomass productivity, and the maximum oil production rates were determined. The highest lipid production was achieved using the biologically treated dairy effluent (up to 14.8% oil in dry biomass corresponding to 124 mg L-1) which also led to high nutrient removal rates (up to 94%). Lipids synthesized by the microbial consortium contained high percentages of saturated and mono-unsaturated fatty acids (up to 75% in total lipids) for all the substrates tested, which implies that the produced biomass may be harnessed as a source of biodiesel.


Asunto(s)
Cianobacterias/química , Lípidos/química , Suero Lácteo/química , Biocombustibles , Biomasa , Microalgas , Consorcios Microbianos , Fotobiorreactores , Aguas Residuales
2.
Eng Life Sci ; 18(11): 851-860, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32624878

RESUMEN

Fish farm effluents may be used as culture media for marine microalgae, the cell mass of which constitute an excellent fish feed rich in bioactive compounds. In the current investigation different fish farm effluents were tested as culture media for Nannochloropsis strains. Among them, Nannochloropsis gaditana grew well on the effluent released from the sedimentation tank (EST), which is the final step of the wastewater treatment. Mono-algal but non-aseptic cultures were conducted in two types of photo-bioreactors, namely stirred tank reactor (STR) and open pond simulating reactor (OPSR) working under various photoperiods. N. gaditana grew well under full illumination mode on phosphate rich EST in the STR, producing 847.0 mg/L of dry cell mass containing 7.8%, w/w lipids, while when cultivated on phosphate limited EST, cell mass production was slightly lower but lipid biosynthesis was favored, with the lipid content reaching 24.7%, w/w in dry cell mass. In all trials, Nannochloropsis cell mass contained significant quantities of proteins and polysaccharides. Neutral lipids were predominant over polar lipids. Both glycolipid and phospholipid fractions were rich in polyunsaturated fatty acids, especially in eicosapentaenoic acid. We conclude that fish farm wastewaters can be re-used as microalgae growth media, which is of financial and environmental importance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA