Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Inflamm Regen ; 43(1): 11, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765434

RESUMEN

BACKGROUND: Canonical Wnt signaling is involved in a variety of biological processes including stem cell renewal and differentiation, embryonic development, and tissue regeneration. Previous studies reported the stage-specific roles of the Wnt signaling in heart development. Canonical Wnt signal activation by recombinant Wnt3a in the early phase of differentiation enhances the efficiency of myocardial cell production from pluripotent stem cells. However, the hydrophobicity of Wnt proteins results in high cost to produce the recombinant proteins and presents an obstacle to their preparation and application for therapeutics, cell therapy, or molecular analysis of Wnt signaling. METHODS: To solve this problem, we generated an inexpensive molecule-responsive differentiation-inducing chimeric antigen receptor (designated as diCAR) that can activate Wnt3a signaling. The extracellular domains of low-density-lipoprotein receptor-related protein 6 (LRP6) and frizzeled-8 (FZD8) were replaced with single-chain Fv of anti-fluorescein (FL) antibody, which can respond to FL-conjugated bovine serum albumin (BSA-FL) as a cognate ligand. We then analyzed the effect of this diCAR on Wnt signal activation and cardiomyocyte differentiation of mouse embryonic stem cells in response to BSA-FL treatment. RESULTS: Embryonic stem cell lines stably expressing this paired diCAR, named Wnt3a-diCAR, showed TCF/ß-catenin-dependent transactivation by BSA-FL in a dose-dependent manner. Treatment with either Wnt3a recombinant protein or BSA-FL in the early phase of differentiation revealed similar changes of global gene expressions and resulted in efficient myocardial cell differentiation. Furthermore, BSA-FL-mediated signal activation was not affected by a Wnt3a antagonist, Dkk1, suggesting that the signal transduction via Wnt3a-diCAR is independent of endogenous LRP6 or FZD8. CONCLUSION: We anticipate that Wnt3a-diCAR enables target-specific signal activation, and could be an economical and powerful tool for stem cell-based regeneration therapy.

2.
Sci Rep ; 12(1): 6398, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35430611

RESUMEN

Dysregulation of nicotinamide adenine dinucleotide (NAD +) metabolism contributes to the initiation and progression of age-associated diseases, including chronic kidney disease (CKD). Nicotinamide N-methyltransferase (NNMT), a nicotinamide (NAM) metabolizing enzyme, regulates both NAD + and methionine metabolism. Although NNMT is expressed abundantly in the kidney, its role in CKD and renal fibrosis remains unclear. We generated NNMT-deficient mice and a unilateral ureter obstruction (UUO) model and conducted two clinical studies on human CKD to investigate the role of NNMT in CKD and fibrosis. In UUO, renal NNMT expression and the degraded metabolites of NAM increased, while NAD + and NAD + precursors decreased. NNMT deficiency ameliorated renal fibrosis; mechanistically, it (1) increased the DNA methylation of connective tissue growth factor (CTGF), and (2) improved renal inflammation by increasing renal NAD + and Sirt1 and decreasing NF-κB acetylation. In humans, along with CKD progression, a trend toward a decrease in serum NAD + precursors was observed, while the final NAD + metabolites were accumulated, and the level of eGFR was an independent variable for serum NAM. In addition, NNMT was highly expressed in fibrotic areas of human kidney tissues. In conclusion, increased renal NNMT expression induces NAD + and methionine metabolism perturbation and contributes to renal fibrosis.


Asunto(s)
NAD , Nicotinamida N-Metiltransferasa , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Femenino , Fibrosis , Humanos , Masculino , Metionina , Ratones , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo
3.
Front Mol Neurosci ; 14: 782375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899185

RESUMEN

Disease-modifying therapies, such as neuroprotective and neurorestorative interventions, are strongly desired for Alzheimer's disease (AD) treatment. Several studies have suggested that histone deacetylase 2 (HDAC2) inhibition can exhibit disease-modifying effects in AD patients. However, whether HDAC2 inhibition shows neuroprotective and neurorestorative effects under neuropathic conditions, such as amyloid ß (Aß)-elevated states, remains poorly understood. Here, we performed HDAC2-specific knockdown in CA1 pyramidal cells and showed that HDAC2 knockdown increased the length of dendrites and the number of mushroom-like spines of CA1 basal dendrites in APP/PS1 transgenic mouse model. Furthermore, HDAC2 knockdown also ameliorated the deficits in hippocampal CA1 long-term potentiation and memory impairment in contextual fear conditioning tests. Taken together, our results support the notion that specific inhibition of HDAC2 has the potential to slow the disease progression of AD through ameliorating Aß-induced neuronal impairments.

4.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178385

RESUMEN

Heart disease is the most common cause of death in developed countries, but the medical treatments for heart failure remain limited. In this context, the development of cardiac regeneration therapy for severe heart failure is important. Owing to their unique characteristics, including multiple differentiation and infinitive self-renewal, pluripotent stem cells can be considered as a novel source for regenerative medicine. Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling plays critical roles in the induction, maintenance, and differentiation of pluripotent stem cells. In the heart, JAK/STAT3 signaling has diverse cellular functions, including myocardial differentiation, cell cycle re-entry of matured myocyte after injury, and anti-apoptosis in pathological conditions. Therefore, regulating STAT3 activity has great potential as a strategy of cardiac regeneration therapy. In this review, we summarize the current understanding of STAT3, focusing on stem cell biology and pathophysiology, as they contribute to cardiac regeneration therapy. We also introduce a recently reported therapeutic strategy for myocardial regeneration that uses engineered artificial receptors that trigger endogenous STAT3 signal activation.


Asunto(s)
Corazón/fisiopatología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Regeneración/fisiología , Medicina Regenerativa/métodos , Factor de Transcripción STAT3/metabolismo , Animales , Bioingeniería/métodos , Diferenciación Celular/fisiología , Humanos , Miocardio/metabolismo
5.
Biotechnol J ; 15(2): e1900052, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31469473

RESUMEN

Producing a sufficient number of cardiomyocytes from pluripotent stem cells has been of great demand for cardiac regeneration therapy. However, it remains challenging to efficiently differentiate cardiomyocytes with low costs. Reportedly, granulocyte colony-stimulating factor (G-CSF) receptor (GCSFR) signaling activates signal transducers and activators of transcription (STAT) signaling and enhances cardiac differentiation from embryonic stem cells or induced pluripotent stem cells (iPSCs). To economically and efficiently produce cardiomyocytes from iPSCs through GCSFR/STAT axis activation, we constructed antibody/receptor chimeras that can respond to an inexpensive small molecule. Single-chain Fv of anti-fluorescein (FL) antibody was ligated to transmembrane/cytoplasmic domains of GCSFRs, enabling transduction of GCSFR signaling in response to FL-conjugated bovine serum albumin (BSA-FL) as an alternative ligand. Mouse iPSC lines constitutively expressing these chimeric receptors exhibited increased BSA-FL-induced STAT3 phosphorylation in a dose-dependent manner, which was abolished by an inhibitor of Janus tyrosine kinase (JAK). In addition, BSA-FL stimulation also increased the incidence of beating embryoid bodies and upregulated cardiac-specific gene expressions after differentiation in these iPSC lines. Therefore, the chimeric GCSFRs activated endogenous GCSFR signaling at least via the JAK/STAT3 pathway, thereby enhancing cardiac differentiation from iPSCs. This approach, as an economical strategy, could contribute to stem cell-based cardiac regeneration therapy.


Asunto(s)
Janus Quinasa 1/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Femenino , Células Madre Pluripotentes Inducidas/fisiología , Janus Quinasa 1/genética , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología , Receptores de Factor Estimulante de Colonias de Granulocito/genética , Proteínas Recombinantes de Fusión , Factor de Transcripción STAT3/genética
6.
Bioorg Med Chem ; 23(22): 7234-9, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26602085

RESUMEN

Pseudomonas aeruginosa is one of the most common and clinically important pathogens because of its resistance to a wide variety of antibiotics. A number of treatments of P. aeruginosa have been developed, but there is still no definitive one. Antisense drugs have a great potential to treat multidrug-resistant P. aeruginosa because this technology, in principle, can inhibit the expression of any essential genes. Nucleic Acid Ther.2012, 22, 323 reported that peptide nucleic acid (PNA) antisenses conjugated to the carrier peptide (RXR)4 and targeted to ftsZ and acpP (essential genes) had antibacterial activity in P. aeruginosa. However, growth inhibition was also found with peptide-PNA antisense conjugates of mismatched sequences (negative controls), and hence there remains a possibility for considerable enhancement of basal level activity due to the general toxicity. To assess the true potential of peptide-PNA conjugates, we measured sequence-dependent knockdown of the (RXR)4-PNA conjugates by using a scrambled sequence as a negative control. In addition, we evaluated (RXR)4-PNA antisenses against three other essential genes (lepB, lptD and mraY) and a non-essential gene (PA1303), and confirmed that multiple sequences targeting only the essential genes showed antimicrobial activity in P. aeruginosa PAO1 cells. We also conducted a rescue experiment and confirmed that the antimicrobial activity of anti-mraY antisenses was an on-target effect, not due to general toxicity. These findings indicate that the (RXR)4­PNA antisense should be a useful tool for target validation of a specific gene and could be a therapeutic platform capable of targeting a variety of genes in P. aeruginosa.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/genética , Oligonucleótidos Antisentido/química , Ácidos Nucleicos de Péptidos/química , Péptidos/química , Pseudomonas aeruginosa/genética , Antibacterianos/síntesis química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Pruebas de Sensibilidad Microbiana , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/farmacología , Pseudomonas aeruginosa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA