Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dalton Trans ; 51(18): 7241-7247, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35471652

RESUMEN

Studies on the reactivity of zinc alkyl compounds towards SO2 are relatively less explored than either oxygenation or hydrolysis reactions. We report on the environmentally friendly and efficient syntheses of a homologous series of [(RSO2)ZnR]n complexes from reactions involving homoleptic R2Zn (R = Me, tBu, Ph) compounds and SO2. Diffusion ordered spectroscopy experiments indicate that the resulting compounds predominately occur as solvated dimers, [(RSO2)ZnR(THF)]2, in THF solution irrespective of the character of the group bonded to the zinc centres. In turn, these organozinc sulfinates exhibit structurally diversified molecular and supramolecular arrangements in the solid state, as evidenced by single-crystal X-ray diffraction studies. The methyl compound crystallises as a one-dimensional polymer, [(MeSO2)ZnMe]n, and the use of tBu2Zn and Ph2Zn leads to molecular aggregates, a tetramer [(tBuSO2)ZntBu]4, and a solvated [(PhSO2)ZnPh]2·2THF dimer, respectively. In addition, new theoretical insights have been gained by modelling the direct trapping of homoleptic organozinc compounds with SO2 using DFT calculations.

2.
ChemSusChem ; 14(18): 3887-3894, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289248

RESUMEN

Solution-based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid-state mechano- and slow-chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent-free solid-state versus liquid-phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6 F5 )2 Zn, and 2,2,6,6-tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent-free solid-state processes. In a toluene solution two distinct paramagnetic Lewis acid-base adducts (C6 F5 )2 Zn(η1 -TEMPO) (1) and (C6 F5 )2 Zn(η1 -TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid-state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non-redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak-to-moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules.

3.
Chemistry ; 27(18): 5666-5674, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33184948

RESUMEN

Simple RZnOR' alkoxides are among the first known organozinc compounds, and widespread interest in their multifaced chemistry has been driven by their fundamental significance and potential applications including various catalytic reactions. Nevertheless, their chemistry in solution and in the solid state remains both relatively poorly understood and a subject of constant debate. Herein, the synthesis and structural characterization of long-sought structural forms, a roof-like trimer [(tBuZn)3 (µ-OC(H)Ph2 )2 (µ3 -OC(H)Ph2 )] and a ladder-type tetramer [(PhZn)4 (µ-OC(H)Ph2 )2 (µ3 -OC(H)Ph2 )2 ], incorporating diphenylmethanolate as a model alkoxide ligand, are reported. Both novel aggregates are robust in the solid state and resistant towards mechanical force. By using 1 H NMR and diffusion-order spectroscopy, it is demonstrated that new RZnOR' alkoxides are kinetically labile in solution and readily undergo ligand scrambling, such as in the case of Schlenk equilibrium. The elucidated key structural issues, which have remained undiscovered for decades, significantly advance the chemistry of RZnOR' alkoxides and should support the rational design of zinc alkoxide-based applications.

4.
Chemistry ; 25(62): 14025, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31697003

RESUMEN

Invited for the cover of this issue are the groups of Janusz Lewinski from Polish Academy of Sciences and Warsaw University of Technology. The image depicts how a zinc ethylsulfinate web can be woven by using diethylzinc and sulfur dioxide. Read the full text of the article at 10.1002/chem.201902733.

5.
Chemistry ; 25(62): 14072-14080, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31379036

RESUMEN

The ability to utilize polluting gases in efficient metal-mediated transformations is one of the most pressing challenges of modern chemistry. Despite numerous studies on the insertion of SO2 into M-C bonds, the chemical reaction of SO2 with organozinc compounds remains little explored. To fill this gap, we report here the systematic study of the reaction of Et2 Zn towards SO2 as well as the influence of Lewis bases on the reaction course. Whereas the equimolar reaction provided a novel example of a structurally characterized organozinc ethylsulfinate compound of general formula [(EtSO2 )ZnEt]n , the utilization of an excess of SO2 led to the formation of the zinc(II) bis(ethylsulfinate) compound [(EtSO2 )2 Zn]n . Moreover, we have discovered that the presence of N-donor Lewis bases represents an efficient tool for the preparation of extended zinc ethylsulfinates, which in turn led to the formation of 1D [(EtSO2 ZnEt)2 (hmta)]n and 2D [((EtSO2 )2 Zn)2 (DABCO)]n ⋅solv (in which solv=THF or toluene, hmta= hexamethylenetetramine, and DABCO=1,4-diazabicyclo[2.2.2]octane) coordination polymers, respectively. The results of DFT calculations on the reactivity of SO2 towards selected Zn-C reactive species as well as the role of an N-donor Lewis base on the stabilization of the transition states complement the discussion.

6.
Dalton Trans ; 46(3): 669-677, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27966728

RESUMEN

The octet-compliant group 13 organometallics with highly polarized bonds in the metal coordination sphere exhibit a significant tendency to maximize their coordination number through the formation of adducts with a wide range of neutral donor ligands or by self-association to give aggregates containing tetrahedral and higher coordinated aluminium centres, and even in some cases molecular complexes equilibrate with ionic species of different coordination numbers of the metal centre. This work provides a comprehensive overview of the structural chemistry landscape of the group 13 carboxylates. Aside from a more systematic approach to the general structural chemistry of the title compounds, the structure investigations of [R2M(µ-O2CPh)]2-type benzoate complexes (where M = B, Al and Ga) and their Lewis acid-base adducts [(R2M)(µ-O2CPh)(py-Me)] are reported. DFT calculations were also performed to obtain a more in-depth understanding of both the changes in the bonding of group 13 organometallic carboxylate adducts with a pyridine ligand.

7.
Chemistry ; 21(14): 5496-503, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25693575

RESUMEN

Organozinc hydroxides, RZnOH, possessing the proton-reactive alkylzinc group and the CO2 -reactive Zn-OH group, represent an intriguing group of organometallic precursors for the synthesis of novel zinc carbonates. Comprehensive experimental and computational investigations on 1) solution and solid-state behavior of tBuZnOH (1) species in the presence of Lewis bases, namely, THF and 4-methylpyridine; 2) step-by-step sequence of the reaction between 1 and CO2; and 3) the effect of a donor ligand and/or an excess of tBu2Zn as an external proton acceptor on the reaction course are reported. DFT calculations for the insertion of carbon dioxide into the dinuclear alkylzinc hydroxide 12 are fully consistent with (1)H NMR spectroscopy studies and indicate that this process is a multistep reaction, in which the insertion of CO2 seems to be the rate-determining step. Moreover, DFT studies show that the mechanism of the rearrangement between key intermediates, that is, the primary alkylzinc bicarbonate with a proximal position of hydrogen and the secondary alkylzinc bicarbonate with a distal position of hydrogen, most likely proceeds through internal rotation of the dinuclear bicarbonate.

8.
Magn Reson Chem ; 52(3): 106-10, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24446425

RESUMEN

In a recent (17)O NMR spectra of liquid sulfur trioxide, several unexpected peaks appeared with the temperature-dependent integrated peak ratio. In order to interpret NMR spectra and assign peaks to possible molecular structures, the theoretical quantum mechanical density functional theory and Møller-Plesset second-order perturbation theory calculations were performed. It is suggested that in the liquid sulfur trioxide, apart from monomeric SO3, a significant amount of (SO3)3 cyclic trimers should appear. No theoretical data support hypothesis on (SO3)2 dimers formation.


Asunto(s)
Teoría Cuántica , Óxidos de Azufre/química , Espectroscopía de Resonancia Magnética/normas , Isótopos de Oxígeno , Estándares de Referencia , Isótopos de Azufre
9.
Chemistry ; 18(18): 5637-45, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22431330

RESUMEN

We report on investigations of reactions of tBu(2)Zn with 8-hydroxyquinoline (q-H) and the influence of water on the composition and structure of the final product. A new synthetic approach to photoluminescent zinc complexes with quinolinate ligands was developed that allowed the isolation of a series of structurally diverse and novel alkylzinc 8-hydroxyquinolate complexes: the trinuclear alkylzinc aggregate [tBuZn(q)](3) (1(3)), the pentanuclear oxo cluster [(tBu)(3)Zn(5)(µ(4) -O)(q)(5)] (2), and the tetranuclear hydroxo cluster [Zn(q)(2)](2)[tBuZn(OH)](2) (3). All compounds were characterized in solution by (1)H NMR, IR, UV/Vis, and photoluminescence (PL) spectroscopy, and in the solid state by X-ray diffraction, TGA, and PL studies. Density functional theory calculations were also carried out for these new Zn(II) complexes to rationalize their luminescence behavior. A detailed analysis of the supramolecular structures of 2 and 3 shows that the unique shape of the corresponding single molecules leads to the formation of extended 3D networks with 1D open channels. Varying the stoichiometry, shape, and supramolecular structure of the resulting complexes leads to changes in their spectroscopic properties. The close-packed crystal structure of 1(3) shows a redshifted emission maximum in comparison to the porous crystal structure of 2 and the THF-solvated structure of 3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA