Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Labelled Comp Radiopharm ; 65(3): 48-62, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34964165

RESUMEN

In the last decade, the development of new radiopharmaceuticals for the imaging and therapy of prostate cancer has been a highly active and important area of research, especially focusing on the prostate-specific membrane antigen (PSMA), an antigen which is upregulated in prostate, as well as in other tumor cells. A large variety of PSMA ligands have been radiolabeled, to date. Among the various derivatives, PSMA-617 resulted to be one of the most interesting in terms of interaction with the antigen and clinical properties, and its lutetium-177 labeled version has recently been approved by regulatory agencies for therapeutic purposes. For this reasons, the radiolabeling with fluorine-18 of a PSMA-617 derivative might be of interest. Beside other methodologies to radiolabel macromolecules with fluorine-18, the "click-chemistry" approach resulted to be very useful, and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is considered one of most efficient and reliable. This paper proposes the synthesis of a suitable precursor for the radiolabeling with fluorine-18 of a new PSMA-617 derivative. The whole radiosynthetic procedure has been fully automated, and the final product, which proved to be stable in plasma, has been obtained with radiochemical yield and purity suitable for subsequent preclinical studies.


Asunto(s)
Radioisótopos de Flúor , Neoplasias de la Próstata , Línea Celular Tumoral , Dipéptidos , Radioisótopos de Flúor/química , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Antígeno Prostático Específico , Neoplasias de la Próstata/patología , Radiofármacos
2.
Front Pharmacol ; 9: 1274, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542281

RESUMEN

TLQP-21 is a neuropeptide that is involved in the control of several physiological functions, including energy homeostasis. Since TLQP-21 could oppose the early phase of diet-induced obesity, it has raised a huge interest, but very little is known about its mechanisms of action on peripheral tissues. Our aim was to investigate TLQP-21 distribution in brain and peripheral tissues after systemic administration using positron emission tomography. We report here the radiolabeling of NODA-methyl phenylacetic acid (MPAA) functionalized JMV5763, a short analog of TLQP-21, with [18F]aluminum fluoride. Labeling of JMV5763 was initially performed manually, on a small scale, and then optimized and implemented on a fully automated radiosynthesis system. In the first experiment, mice were injected in the tail vein with [18F]JMV5763, and central and peripheral tissues were collected 13, 30, and 60 min after injection. Significant uptake of [18F]JMV5763 was found in stomach, intestine, kidney, liver, and adrenal gland. In the CNS, very low uptake values were measured in all tested areas, suggesting that the tracer does not efficiently cross the blood-brain barrier. Pretreatment with non-radioactive JMV5763 caused a significant reduction of tracer uptake only in stomach and intestine. In the second experiment, PET analysis was performed in vivo 10-120 min after i.v. [18F]JMV5763 administration. Results were consistent with those of the ex vivo determinations. PET images showed a progressive increase of [18F]JMV5763 uptake in intestine and stomach reaching a peak at 30 min, and decreasing at 120 min. Our results demonstrate that 18F-labeling of TLQP-21 analogs is a suitable method to study its distribution in the body.

3.
J Med Chem ; 48(22): 7018-23, 2005 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16250661

RESUMEN

The selective dopamine D(3) receptor ligands N-4-[4-[(2,3-dichlorophenyl)piperazin-1-yl]butyl]1-methoxy-2-naphthalencarboxamide (1) and N-4-[4-[(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-methoxy-2-benzofurancarboxamide (2) were labeled with (11)C (t(1/2) = 20.4 min) as potential radioligands for the noninvasive assessment of the dopamine D(3) neurotransmission system in vivo with positron emission tomography (PET). The radiosynthesis consisted in an O-methylation of the des-methyl precursors N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-1-hydroxy-2-naphthalenecarboxamide (3) and N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-hydroxy-2-benzofurancarboxamide (4) with [(11)C]methyl iodide using tBuOK/HMPA and KOH/DMSO, respectively. The radiotracers [(11)C]1 and [(11)C]2 were obtained in 35 min with over 99% radiochemical purity, 74 +/- 37 GBq/mumol of specific radioactivity, 13% and 26% radiochemical yield (EOB, decay-corrected). Distribution studies in rats demonstrated that the new tracers [(11)C]1 and [(11)C]2 cross the blood-brain barrier and localize in the brain. However, the kinetics of cerebral uptake did not reflect the regional expression of the D(3) receptors. Despite their in vitro pharmacological profile, [(11)C]1 and [(11)C]2 do not display an in vivo behavior suitable to image D(3) receptor expression using PET.


Asunto(s)
Amidas/síntesis química , Encéfalo/metabolismo , Piperazinas/síntesis química , Radiofármacos/síntesis química , Receptores de Dopamina D3/metabolismo , Amidas/química , Amidas/farmacocinética , Animales , Autorradiografía , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono , Ligandos , Masculino , Piperazinas/química , Piperazinas/farmacocinética , Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/farmacocinética , Ratas , Relación Estructura-Actividad , Distribución Tisular
4.
Eur J Pharmacol ; 453(2-3): 231-8, 2002 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-12398909

RESUMEN

The radiolabelling with the positron-emitter Carbon-11 and the biological evaluation in rats of 3-[2-[4-(2-[11C]methoxyphenyl)piperazin-1-yl]ethyl]pyrimido[5,4-b]indole-2,4-dione ([11C]RN5), alpha1-adrenoceptor antagonist (K(i)=0.21 nM), as a putative radioligand for the non-invasive assessment of alpha1-adrenoceptors with positron emission tomography (PET) is reported. The radiosynthesis procedure consisted of O-methylation of des-methyl precursor with [11C]methyl iodide in the presence of potassium hydroxide in dimethylformamide (DMF) at 80 degrees C. [11C]RN5 was obtained in >99% radiochemical purity in 25 min with a radiochemical yield in the 20-30% range, end of synthesis (EOS) (non-decay corrected) and a specific radioactivity of 92.5+/-18.5 GBq/micromol. Pre-clinical studies in rats showed a high uptake of [11C]RN5 in heart, spleen, adrenal gland, lung and kidney but not in the brain. Inhibition studies with high doses of different adrenergic antagonists indicate that more than 70% of myocardial uptake of [11C]RN5 is due to specific binding to alpha1-adrenoceptors. Our results indicate that [11C]RN5 is suitable to be further developed as a potential radioligand for the in vivo PET imaging of myocardial alpha1-adrenoceptors in humans.


Asunto(s)
Antagonistas Adrenérgicos alfa/farmacocinética , Indoles/farmacocinética , Miocardio/metabolismo , Pirimidinas/farmacocinética , Radiofármacos/farmacocinética , Receptores Adrenérgicos alfa 1/metabolismo , Animales , Sitios de Unión , Radioisótopos de Carbono , Marcaje Isotópico , Ligandos , Masculino , Ratas , Ratas Endogámicas , Distribución Tisular , Tomografía Computarizada de Emisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA