Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(1): 163-167, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063078

RESUMEN

We detected a novel GII.4 variant with an amino acid insertion at the start of epitope A in viral protein 1 of noroviruses from the United States, Gabon, South Africa, and the United Kingdom collected during 2017-2022. Early identification of GII.4 variants is crucial for assessing pandemic potential and informing vaccine development.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Humanos , Gastroenteritis/epidemiología , Norovirus/genética , Infecciones por Caliciviridae/epidemiología , Genotipo , Pandemias , Filogenia
2.
Nature ; 617(7961): 564-573, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36996872

RESUMEN

Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.


Asunto(s)
Infecciones por Adenovirus Humanos , Genómica , Hepatitis , Niño , Humanos , Enfermedad Aguda/epidemiología , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/inmunología , Infecciones por Adenovirus Humanos/virología , Linfocitos B/inmunología , Perfilación de la Expresión Génica , Hepatitis/epidemiología , Hepatitis/inmunología , Hepatitis/virología , Inmunohistoquímica , Hígado/inmunología , Hígado/virología , Proteómica , Linfocitos T/inmunología
3.
Retrovirology ; 19(1): 28, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514107

RESUMEN

We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach to amplify HIV material following poor success with standard approaches. In comparisons with a smaller 'intermediate' genome dataset from 1998 to 1999 and a 'modern' genome dataset from 2007 to 2016, the proportion of subtype D was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African population studies, and to have a higher propensity to use the CXCR4 co-receptor ("X4 tropism"); associated with a decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may explain the higher propensity for subtype D to utilise X4 tropism.


Asunto(s)
Infecciones por VIH , VIH-1 , Receptores CXCR4 , Tropismo Viral , Humanos , Pueblo Africano , Infecciones por VIH/epidemiología , Infecciones por VIH/virología , VIH-1/genética , Receptores CXCR4/genética , Uganda
4.
mBio ; 13(5): e0186122, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36102514

RESUMEN

Understanding the complex interactions between virus and host that drive new strain evolution is key to predicting the emergence potential of variants and informing vaccine development. Under our hypothesis, future dominant human norovirus GII.4 variants with critical antigenic properties that allow them to spread are currently circulating undetected, having diverged years earlier. Through large-scale sequencing of GII.4 surveillance samples, we identified two variants with extensive divergence within domains that mediate neutralizing antibody binding. Subsequent serological characterization of these strains using temporally resolved adult and child sera suggests that neither candidate could spread globally in adults with multiple GII.4 exposures, yet young children with minimal GII.4 exposure appear susceptible. Antigenic cartography of surveillance and outbreak sera indicates that continued population exposure to GII.4 Sydney 2012 and antigenically related variants over a 6-year period resulted in a broadening of immunity to heterogeneous GII.4 variants, including those identified here. We show that the strongest antibody responses in adults exposed to GII.4 Sydney 2012 are directed to previously circulating GII.4 viruses. Our data suggest that the broadening of antibody responses compromises establishment of strong GII.4 Sydney 2012 immunity, thereby allowing the continued persistence of GII.4 Sydney 2012 and modulating the cycle of norovirus GII.4 variant replacement. Our results indicate a cycle of norovirus GII.4 variant replacement dependent upon population immunity. Young children are susceptible to divergent variants; therefore, emergence of these strains worldwide is driven proximally by changes in adult serological immunity and distally by viral evolution that confers fitness in the context of immunity. IMPORTANCE In our model, preepidemic human norovirus variants harbor genetic diversification that translates into novel antigenic features without compromising viral fitness. Through surveillance, we identified two viruses fitting this profile, forming long branches on a phylogenetic tree. Neither evades current adult immunity, yet young children are likely susceptible. By comparing serological responses, we demonstrate that population immunity varies by age/exposure, impacting predicted susceptibility to variants. Repeat exposure to antigenically similar variants broadens antibody responses, providing immunological coverage of diverse variants but compromising response to the infecting variant, allowing continued circulation. These data indicate norovirus GII.4 variant replacement is driven distally by virus evolution and proximally by immunity in adults.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Adulto , Niño , Humanos , Preescolar , Filogenia , Anticuerpos Neutralizantes , Brotes de Enfermedades/prevención & control , Genotipo
5.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885749

RESUMEN

17ß-Hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is expressed at high levels in testes and seminal vesicles; it is also present in prostate tissue and involved in gonadal and non-gonadal testosterone biosynthesis. The enzyme is membrane-bound, and a crystal structure is not yet available. Selective aryl benzylamine-based inhibitors were designed and synthesised as potential agents for prostate cancer therapeutics through structure-based design, using a previously built homology model with docking studies. Potent, selective, low nanomolar IC50 17ß-HSD3 inhibitors were discovered using N-(2-([2-(4-chlorophenoxy)phenylamino]methyl)phenyl)acetamide (1). The most potent compounds have IC50 values of approximately 75 nM. Compound 29, N-[2-(1-Acetylpiperidin-4-ylamino)benzyl]-N-[2-(4-chlorophenoxy)phenyl]acetamide, has an IC50 of 76 nM, while compound 30, N-(2-(1-[2-(4-chlorophenoxy)-phenylamino]ethyl)phenyl)acetamide, has an IC50 of 74 nM. Racemic C-allyl derivative 26 (IC50 of 520 nM) was easily formed from 1 in good yield and, to determine binding directionality, its enantiomers were separated by chiral chromatography. Absolute configuration was determined using single crystal X-ray crystallography. Only the S-(+)-enantiomer (32) was active with an IC50 of 370 nM. Binding directionality was predictable through our in silico docking studies, giving confidence to our model. Importantly, all novel inhibitors are selective over the type 2 isozyme of 17ß-HSD2 and show <20% inhibition when tested at 10 µM. Lead compounds from this series are worthy of further optimisation and development as inhibitors of testosterone production by 17ß-HSD3 and as inhibitors of prostate cancer cell growth.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/química , Bencilaminas/química , Neoplasias de la Próstata/tratamiento farmacológico , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/ultraestructura , Bencilaminas/síntesis química , Bencilaminas/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Masculino , Simulación del Acoplamiento Molecular , Próstata/efectos de los fármacos , Próstata/metabolismo , Neoplasias de la Próstata/patología , Relación Estructura-Actividad , Testosterona/biosíntesis
6.
Tuberculosis (Edinb) ; 126: 102046, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33421909

RESUMEN

RNASeq analysis of PBMCs from treatment naïve TB patients and healthy controls revealed that M. tuberculosis (Mtb) infection dysregulates several metabolic pathways and upregulates BNIP3L/NIX receptor mediated mitophagy. Analysis of publicly available transcriptomic data from the NCBI-GEO database indicated that M. bovis (BCG) infection also induces similar rewiring of metabolic and mitophagy pathways. Mtb chronic infection and BCG in-vitro infection both downregulated oxidative phosphorylation and upregulated glycolysis and mitophagy; therefore, we used non-pathogenic mycobacterial species BCG as a model for Mtb infection to gain molecular insights and outcomes of this phenomenon. BCG infection in PBMCs and THP-1 macrophages induce mitophagy and glycolysis, leading to differentiation of naïve macrophage to M1 phenotype. Glucose consumption and lactate production were quantified by NMR, while the mitochondrial mass assessment was performed by mitotracker red uptake assay. Infected macrophages predominantly exhibit M1-phenotype, which is indicated by an increase in M1 specific cytokines (IL-6, TNF-α, and IL-1ß) and increased NOS2/ARG1, CD86/CD206 ratio. NIX knockdown abrogates this upregulation of glycolysis, mitophagy, and secretion of pro-inflammatory cytokines in BCG infected cells, indicating that mycobacterial infection-induced immunometabolic changes are executed via NIX mediated mitophagy and are essential for macrophage differentiation and resolution of infection.


Asunto(s)
Regulación de la Expresión Génica , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Mitofagia/genética , Mycobacterium tuberculosis/aislamiento & purificación , Proteínas Proto-Oncogénicas/genética , Tuberculosis/genética , Proteínas Supresoras de Tumor/genética , Apoptosis , Diferenciación Celular , Células Cultivadas , ADN/genética , ADN/metabolismo , Humanos , Macrófagos/patología , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología , Proteínas Supresoras de Tumor/metabolismo
7.
Clin Infect Dis ; 71(7): e191-e194, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32124919

RESUMEN

A combination of favipiravir and zanamivir successfully cleared influenza B infection in a child who had undergone bone marrow transplant for X-linked severe combined immunodeficiency, with no recovery of T lymphocytes. Deep sequencing of viral samples illuminated the within-host dynamics of infection, demonstrating the effectiveness of favipiravir in this case.


Asunto(s)
Gripe Humana , Zanamivir , Amidas , Antivirales/uso terapéutico , Niño , Humanos , Gripe Humana/tratamiento farmacológico , Pirazinas/uso terapéutico , Zanamivir/uso terapéutico
8.
J Invest Dermatol ; 140(4): 774-784.e11, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31626786

RESUMEN

Varicella zoster virus (VZV) is a skin-tropic virus that infects epidermal keratinocytes and causes chickenpox. Although common, VZV infection can be life-threatening, particularly in the immunocompromized. Therefore, understanding VZV-keratinocyte interactions is important to find new treatments beyond vaccination and antiviral drugs. In VZV-infected skin, kallikrein 6 and the ubiquitin ligase MDM2 are upregulated concomitant with keratin 10 (KRT10) downregulation. MDM2 binds to KRT10, targeting it for degradation via the ubiquitin-proteasome pathway. Preventing KRT10 degradation reduced VZV propagation in culture and prevented epidermal disruption in skin explants. KRT10 knockdown induced expression of NR4A1 and enhanced viral propagation in culture. NR4A1 knockdown prevented viral propagation in culture, reduced LC3 levels, and increased LAMP2 expression. We therefore describe a drug-able pathway whereby MDM2 ubiquitinates and degrades KRT10, increasing NR4A1 expression and allowing VZV replication and propagation.


Asunto(s)
Regulación de la Expresión Génica , Herpes Zóster/genética , Herpes Zóster/metabolismo , Herpesvirus Humano 3/fisiología , Queratina-10/genética , Queratinocitos/patología , ARN/genética , Replicación Viral , Herpes Zóster/virología , Humanos , Queratina-10/biosíntesis , Queratinocitos/metabolismo , Queratinocitos/virología
9.
Proc Natl Acad Sci U S A ; 116(12): 5693-5698, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30819890

RESUMEN

Recent sequencing efforts have led to estimates of human cytomegalovirus (HCMV) genome-wide intrahost diversity that rival those of persistent RNA viruses [Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) PLoS Pathog 7:e1001344]. Here, we deep sequence HCMV genomes recovered from single and longitudinally collected blood samples from immunocompromised children to show that the observations of high within-host HCMV nucleotide diversity are explained by the frequent occurrence of mixed infections caused by genetically distant strains. To confirm this finding, we reconstructed within-host viral haplotypes from short-read sequence data. We verify that within-host HCMV nucleotide diversity in unmixed infections is no greater than that of other DNA viruses analyzed by the same sequencing and bioinformatic methods and considerably less than that of human immunodeficiency and hepatitis C viruses. By resolving individual viral haplotypes within patients, we reconstruct the timing, likely origins, and natural history of superinfecting strains. We uncover evidence for within-host recombination between genetically distinct HCMV strains, observing the loss of the parental virus containing the nonrecombinant fragment. The data suggest selection for strains containing the recombinant fragment, generating testable hypotheses about HCMV evolution and pathogenesis. These results highlight that high HCMV diversity present in some samples is caused by coinfection with multiple distinct strains and provide reassurance that within the host diversity for single-strain HCMV infections is no greater than for other herpesviruses.


Asunto(s)
Citomegalovirus/genética , Recombinación Genética/genética , Sobreinfección/genética , Secuencia de Bases/genética , Niño , Preescolar , Infecciones por Citomegalovirus/virología , ADN Viral/genética , Femenino , Variación Genética/genética , Genoma Humano/genética , Genoma Viral , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Huésped Inmunocomprometido/genética , Lactante , Recién Nacido , Masculino , Análisis de Secuencia de ADN/métodos
10.
Virus Evol ; 3(2): vex030, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29250429

RESUMEN

Genome sequence data are of great value in describing evolutionary processes in viral populations. However, in such studies, the extent to which data accurately describes the viral population is a matter of importance. Multiple factors may influence the accuracy of a dataset, including the quantity and nature of the sample collected, and the subsequent steps in viral processing. To investigate this phenomenon, we sequenced replica datasets spanning a range of viruses, and in which the point at which samples were split was different in each case, from a dataset in which independent samples were collected from a single patient to another in which all processing steps up to sequencing were applied to a single sample before splitting the sample and sequencing each replicate. We conclude that neither a high read depth nor a high template number in a sample guarantee the precision of a dataset. Measures of consistency calculated from within a single biological sample may also be insufficient; distortion of the composition of a population by the experimental procedure or genuine within-host diversity between samples may each affect the results. Where it is possible, data from replicate samples should be collected to validate the consistency of short-read sequence data.

11.
J Clin Virol ; 96: 44-48, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28950185

RESUMEN

BACKGROUND: Norovirus causes chronic infections in immunocompromised patients with considerable associated morbidity. It is not known whether chronic infections involve super- or re-infections or relapses. OBJECTIVES: To retrospectively investigate whether longitudinal sampling in chronically infected patients demonstrates persistent infection with the same virus, or super- or re-infection. STUDY DESIGN: Norovirus full genomes were generated from 86 longitudinal samples from 25 paediatric patients. Consensus sequences were used for phylogenetic analysis and genotyping. RESULTS: Super-infections occurred in 17% of chronically infected patients who were continuously PCR positive; including two with mixed norovirus infections. The median duration of infection was 107days longer in those with super-infections; however this was not statistically significant. A third of patients with interrupted norovirus shedding continued to be infected with the same virus despite up to 2 months of PCR negative stools, classified as a relapse. The majority (67%) of patients with interrupted shedding were re-infected with a different genotype. CONCLUSIONS: Chronically infected patients who are continuously PCR positive are most likely to remain infected with the same virus; however super-infections do occur leading to mixed infection. Patients with interrupted shedding are likely to represent re-infection with a different genotype, however relapsing infections also occur. Our findings have implications for infection control as immunosuppressed patients remain susceptible to new norovirus infections despite current or recent infection and may continue to be infectious after norovirus is undetectable in stool. The relevance to children without co-morbidities remains to be determined.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Norovirus/clasificación , Norovirus/aislamiento & purificación , Recurrencia , Sobreinfección/epidemiología , Sobreinfección/virología , Adolescente , Niño , Preescolar , Enfermedad Crónica , Femenino , Técnicas de Genotipaje , Humanos , Lactante , Estudios Longitudinales , Masculino , Norovirus/genética , Estudios Retrospectivos , Análisis de Secuencia de ADN
13.
Front Microbiol ; 7: 1317, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27667983

RESUMEN

Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.

14.
PLoS Negl Trop Dis ; 10(9): e0004863, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27603015

RESUMEN

BACKGROUND: Trachoma is endemic in several Pacific Island states. Recent surveys across the Solomon Islands indicated that whilst trachomatous inflammation-follicular (TF) was present at levels warranting intervention, the prevalence of trachomatous trichiasis (TT) was low. We set out to determine the relationship between chlamydial infection and trachoma in this population. METHODS: We conducted a population-based trachoma prevalence survey of 3674 individuals from two Solomon Islands provinces. Participants were examined for clinical signs of trachoma. Conjunctival swabs were collected from all children aged 1-9 years. We tested swabs for Chlamydia trachomatis (Ct) DNA using droplet digital PCR. Chlamydial DNA from positive swabs was enriched and sequenced for use in phylogenetic analysis. RESULTS: We observed a moderate prevalence of TF in children aged 1-9 years (n = 296/1135, 26.1%) but low prevalence of trachomatous inflammation-intense (TI) (n = 2/1135, 0.2%) and current Ct infection (n = 13/1002, 1.3%) in children aged 1-9 years, and TT in those aged 15+ years (n = 2/2061, 0.1%). Ten of 13 (76.9%) cases of infection were in persons with TF or TI (p = 0.0005). Sequence analysis of the Ct-positive samples yielded 5/13 (38%) complete (>95% coverage of reference) genome sequences, and 8/13 complete plasmid sequences. Complete sequences all aligned most closely to ocular serovar reference strains. DISCUSSION: The low prevalence of TT, TI and Ct infection that we observed are incongruent with the high proportion of children exhibiting signs of TF. TF is present at levels that apparently warrant intervention, but the scarcity of other signs of trachoma indicates the phenotype is mild and may not pose a significant public health threat. Our data suggest that, whilst conjunctival Ct infection appears to be present in the region, it is present at levels that are unlikely to be the dominant driving force for TF in the population. This could be one reason for the low prevalence of TT observed during the study.


Asunto(s)
Chlamydia trachomatis/aislamiento & purificación , Tracoma/epidemiología , Triquiasis/epidemiología , Adolescente , Distribución por Edad , Niño , Preescolar , Análisis por Conglomerados , Estudios Transversales , Composición Familiar , Femenino , Humanos , Lactante , Modelos Logísticos , Masculino , Tamizaje Masivo , Melanesia/epidemiología , Filogenia , Encuestas y Cuestionarios
15.
Virus Evol ; 2(1): vew017, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30288299

RESUMEN

Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle.

16.
J Clin Microbiol ; 53(7): 2230-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25972414

RESUMEN

The rapid identification of antimicrobial resistance is essential for effective treatment of highly resistant Mycobacterium tuberculosis. Whole-genome sequencing provides comprehensive data on resistance mutations and strain typing for monitoring transmission, but unlike for conventional molecular tests, this has previously been achievable only from cultures of M. tuberculosis. Here we describe a method utilizing biotinylated RNA baits designed specifically for M. tuberculosis DNA to capture full M. tuberculosis genomes directly from infected sputum samples, allowing whole-genome sequencing without the requirement of culture. This was carried out on 24 smear-positive sputum samples, collected from the United Kingdom and Lithuania where a matched culture sample was available, and 2 samples that had failed to grow in culture. M. tuberculosis sequencing data were obtained directly from all 24 smear-positive culture-positive sputa, of which 20 were of high quality (>20× depth and >90% of the genome covered). Results were compared with those of conventional molecular and culture-based methods, and high levels of concordance between phenotypical resistance and predicted resistance based on genotype were observed. High-quality sequence data were obtained from one smear-positive culture-negative case. This study demonstrated for the first time the successful and accurate sequencing of M. tuberculosis genomes directly from uncultured sputa. Identification of known resistance mutations within a week of sample receipt offers the prospect for personalized rather than empirical treatment of drug-resistant tuberculosis, including the use of antimicrobial-sparing regimens, leading to improved outcomes.


Asunto(s)
Técnicas Bacteriológicas/métodos , Farmacorresistencia Bacteriana , Técnicas de Genotipaje/métodos , Mycobacterium tuberculosis/genética , Manejo de Especímenes/métodos , Esputo/microbiología , Tuberculosis Pulmonar/microbiología , Humanos , Lituania , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Factores de Tiempo , Tuberculosis Pulmonar/diagnóstico , Reino Unido
17.
BMC Infect Dis ; 14: 591, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25388670

RESUMEN

BACKGROUND: Chlamydia trachomatis is a pathogen of worldwide importance, causing more than 100 million cases of sexually transmitted infections annually. Whole-genome sequencing is a powerful high resolution tool that can be used to generate accurate data on bacterial population structure, phylogeography and mutations associated with antimicrobial resistance. The objective of this study was to perform whole-genome enrichment and sequencing of C. trachomatis directly from clinical samples. METHODS: C. trachomatis positive samples comprising seven vaginal swabs and three urine samples were sequenced without prior in vitro culture in addition to nine cultured C. trachomatis samples, representing different serovars. A custom capture RNA bait set, that captures all known diversity amongst C. trachomatis genomes, was used in a whole-genome enrichment step during library preparation to enrich for C. trachomatis DNA. All samples were sequenced on the MiSeq platform. RESULTS: Full length C. trachomatis genomes (>95-100% coverage of a reference genome) were successfully generated for eight of ten clinical samples and for all cultured samples. The proportion of reads mapping to C. trachomatis and the mean read depth across each genome were strongly linked to the number of bacterial copies within the original sample. Phylogenetic analysis confirmed the known population structure and the data showed potential for identification of minority variants and mutations associated with antimicrobial resistance. The sensitivity of the method was >10-fold higher than other reported methodologies. CONCLUSIONS: The combination of whole-genome enrichment and deep sequencing has proven to be a non-mutagenic approach, capturing all known variation found within C. trachomatis genomes. The method is a consistent and sensitive tool that enables rapid whole-genome sequencing of C. trachomatis directly from clinical samples and has the potential to be adapted to other pathogens with a similar clonal nature.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , Análisis de Secuencia de ADN
18.
Endocr Relat Cancer ; 20(1): 53-64, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23132791

RESUMEN

17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) catalyse the 17-position reduction/oxidation of steroids. 17ß-HSD type 3 (17ß-HSD3) catalyses the reduction of the weakly androgenic androstenedione (adione) to testosterone, suggesting that specific inhibitors of 17ß-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia. STX2171 is a novel selective non-steroidal 17ß-HSD3 inhibitor with an IC(50) of ∼200 nM in a whole-cell assay. It inhibits adione-stimulated proliferation of 17ß-HSD3-expressing androgen receptor-positive LNCaP(HSD3) prostate cancer cells in vitro. An androgen-stimulated LNCaP(HSD3) xenograft proof-of-concept model was developed to study the efficacies of STX2171 and a more established 17ß-HSD3 inhibitor, STX1383 (SCH-451659, Schering-Plough), in vivo. Castrated male MF-1 mice were inoculated s.c. with 1×10(7) cells 24 h after an initial daily dose of testosterone propionate (TP) or vehicle. After 4 weeks, tumours had not developed in vehicle-dosed mice, but were present in 50% of those mice given TP. One week after switching the stimulus to adione, mice were dosed additionally with the vehicle or inhibitor for a further 4 weeks. Both TP and adione efficiently stimulated tumour growth and increased plasma testosterone levels; however, in the presence of either 17ß-HSD3 inhibitor, adione-dependent tumour growth was significantly inhibited and plasma testosterone levels reduced. Mouse body weights were unaffected. Both inhibitors also significantly lowered plasma testosterone levels in intact mice. In conclusion, STX2171 and STX1383 significantly lower plasma testosterone levels and inhibit androgen-dependent tumour growth in vivo, indicating that 17ß-HSD3 inhibitors may have application in the treatment of hormone-dependent prostate cancer.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Benzazepinas/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Testosterona/sangre , 17-Hidroxiesteroide Deshidrogenasas/genética , Animales , Apoptosis , Benzazepinas/química , Western Blotting , Castración , Proliferación Celular , Inhibidores Enzimáticos/química , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias Hormono-Dependientes/enzimología , Neoplasias Hormono-Dependientes/patología , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , ARN Mensajero/genética , Radioinmunoensayo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Carga Tumoral , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Ann N Y Acad Sci ; 1155: 80-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19250195

RESUMEN

Steroid sulfatase (STS) regulates the hydrolysis of steroid sulfates to their unconjugated forms. Estrone sulfate and dehydroepiandrosterone sulfate can be hydrolyzed by STS to estrone and dehydroepiandrosterone, respectively, with these steroids being the precursors for the synthesis of more biologically active estrogens or androgens. A number of potent STS inhibitors have now been developed including STX64, which entered a phase I trial for the treatment of postmenopausal women with advanced metastatic hormone-dependent breast cancer. The results from this phase I trial were encouraging, suggesting that STS inhibitors may also have a role in the treatment of other hormone-dependent cancers including those of the endometrium, ovary, and prostate. In this paper the potential use of STS inhibitors to treat these hormone-dependent cancers is reviewed. In addition, results from in vitro studies show that Ishikawa endometrial cancer cells, OVCAR-3 ovarian cancer cells, and LNCaP prostate cancer cells all possess significant STS activity. Furthermore, STS activity in these cells can be almost completely inhibited by STX64 or the second-generation STS inhibitor, STX213. Results from these investigations therefore suggest that STS inhibitors could have therapeutic potential for the treatment of a range of hormone-dependent cancers.


Asunto(s)
Inhibidores Enzimáticos/química , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Esteril-Sulfatasa/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Endometriales/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteril-Sulfatasa/genética
20.
Mol Cell Endocrinol ; 301(1-2): 259-65, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18775469

RESUMEN

17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD3) is expressed at high levels in the testes and seminal vesicles but has also been shown to be present in prostate tissue, suggesting its potential involvement in both gonadal and non-gonadal testosterone biosynthesis. The role of 17beta-HSD3 in testosterone biosynthesis makes this enzyme an attractive molecular target for small molecule inhibitors for the treatment of prostate cancer. Here we report the design of selective inhibitors of 17beta-HSD3 as potential anti-cancer agents. Due to 17beta-HSD3 being a membrane-bound protein a crystal structure is not yet available. A homology model of 17beta-HSD3 has been built to aid structure-based drug design. This model has been used with docking studies to identify a series of lead compounds that may give an insight as to how inhibitors interact with the active site. Compound 1 was identified as a potent selective inhibitor of 17beta-HSD3 with an IC(50)=700nM resulting in the discovery of a novel lead series for further optimisation. Using our homology model as a tool for inhibitor design compound 5 was discovered as a novel potent and selective inhibitor of 17beta-HSD3 with an IC(50) approximately 200nM.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , 17-Hidroxiesteroide Deshidrogenasas/clasificación , Azepinas/síntesis química , Azepinas/química , Azepinas/farmacología , Dominio Catalítico , Línea Celular , Inhibidores Enzimáticos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Piperidinas/síntesis química , Piperidinas/química , Piperidinas/farmacología , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA